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The spreading of a one-dimensional wavepacket solution of 8iiger’s equation is related to the
diffraction of light, as can be verified by considering the three-dimensional spreading of a
wavepacket for an arbitrary dispersion relation. This investigation uncovers a special property of
Schralinger’s equation for a free particle: A wavepacket with initial spherical symmetry will
preserve this symmetry in all Galilean reference frames. This property leads to a derivation of de
Broglie's postulate that wave number is proportional to momen(mrvelocity). The application to
non-Gaussian wavepackets and to Fraunhoffer diffraction also is discusseah4@merican
Association of Physics Teachers.
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I. INTRODUCTION mate. Sections Il and IIl derive Eq$l) and (2) for non-
Gaussian wavepackets in three dimensions.

Many students encounter Heisenberg’s uncertainty prin- In the following we assume the wavepacket to be of the
ciple in the context of the Fraunhoffer diffraction of light by form,
a single slit taking de Broglie’s hypothesisp=7#k
=2mhi\, as a starting pointPassage through the slit yields
information about the particle’s position in the direction per-
pendicular to motion. The subsequent diffraction of the wave
implies uncertainty in that component of the momentum. Al-where 7=n(k) is a real valued function, andk,
though this derivation assumes that both light and particle= (| k0p| ) is the expectation value of the wave number.
waves diffract in essentially the same fashion, student¥his expectation value may be found either rinspace,
should also know that pulses of light do not spread in thefd3 * (—iV), or ink spacefd3k ¢* ke, whereg is the
direction parallel to motion. This paper explores how arbi-Fourier transform ofy. The generalization to higher dimen-
trary linear waves spread and diffract. | will show that bothsjons is achieved by replacingfw/dk? in Eq. (2) by the

w(r,t=0)=fd3k n(k)yexgiko-r+ideol, 3)

properties are governed by a symmetric ter@%m/akikj, eigenvalues of the 83 tensor, D=d’w/dkok
which is obtained directly from the dispersion relatian :azw/,gki(;kj_ [See the discussion after E4L5) below]
= w(K) = o(ky, Ky, k). What might not seem intuitive is tha has nonzero ele-

We follow the familiar Gaussian wavepacket solution of ments even when the dispersion relation has the nondisper-

Schralinger’s equatiort,and introduce a coherence time,  sive form,o=Ck, whereC is a constantwhich need not be
Leta=((x—(x))%)Y2 represent the initial standard deviation the speed of light

Ax of the wavepacket, and assume thatAk takes on its The three-dimensional spreading of a wavepacket unveils
minimum possible value at time=0. As time evolves, the a nonrelativistic symmetry argument that motivates Sghro
uncertainty(standard deviationwill grow as!? inger’s dispersion relation for a free particle. Although the
2112 rigorous discussion of Sec. Il requires tensor calculus, this
Ax=al 1+~ } (1) symmetry argument can be intuitively understood as follows.
Suppose that we begin with the understanding that particles

are the limiting form of wavepackets, but without a knowl-
edge of the dispersion relation or wave equation. De Bro-
glie’s relations E=%w and p=#k) have yet to be estab-
_alAk alAk lished. Nor do we know that the classical Hamiltonian for a
- [ERES - [ERE 2) free particle isH(p,q)=p?/(2m). We seek a nonrelativistic

_ . . . dispersion relation. Consider first the familiar dispersion re-
wherev = dw/dk is the group velocity, and\k is the stan- lation, w(k)=Ck. Because the group velocity,=dw/dk

dard deviation of the wave number. If the wavepacket has a - : ; : ;
. ! ) : i =C, never vanishes, this form is obviously unsuitable as a
Gaussian profile, thea/ Ak=2a?. If the dispersion relation y

) TN i model for Newtonian particles. The dispersion relation,
IS h“’_zﬁ k®/2m+V, we obtain the well-known resulty \y_ ck; is also unsuitable due to the asymmetric manner
=2ma‘/h. It can be understood as follows: The spread inj, \yhich wavepackets spread. Recall that in vacuo light has
group velocity is estimated bv = (dv/dk)Ak. For typical  the peculiar property of diffracting in directions perpendicu-
or ideal circumstances, a wavepacket of original sizewill |ar to its motion, while exhibiting no spreadir(dispersion
retain this size for a timer, where rfAv~a. Equation(2)  in the direction parallel to its motion. If the wavepacket is to
follows directly, though only as an order of magnitude esti-represent a particle, an initially spherically symmetric Gauss-

Under certain circumstances, Ed) can be generalized for
an arbitrary dispersion relation, and for higher dimensions,

T
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ian wavepacket must remain spherically symmetric for anyll. SPREADING AND DIFFRACTION IN THREE
(nonrelativistig velocity. The absence of such a symmetry DIMENSIONS
would suggest the existence of a preferred reference frame. ] ) ) )

We therefore seek a dispersion relation for which the We Taylor expand an arbitrary dispersion relation, assum-
spreading is equal in all directions, and temporarily restricind that the wavepacket is localized knspace, centered at
ourselves to those of the form,= CKk". The diffraction of a SOMe wave numbei, and frequencyvo=w(ko):
beam of light arises from the fact it is a superposition of 1 Pw
waves traveling in different directions. The spreading of aw(k)=wo+V-(k=Ko)+ 5 (k—ko)- —— - (K—Ko) + -
one-dimensional wavepacket arises from the various compo-
nents of a wavepacket travelling at different speeds. Equa- =4+ vext+ L ieDosct- -, (4)
tion (2) implies that largen is associated with more spread- _
ing along the direction of propagation. Therefore it isWhere x=(k—kq). The symmetric ¥3 tensorD may be
plausible that for some unique, the dispersion relationy ~ €XPressed in a number of forms:
=CKk", might possess the required balance of dispersion and i Pw Pw
diffraction necessary to maintain spherical symmetry. Al- " okiok;  akak
though this plausiblility argument fails to suggest a specific ) o o ]
value forn, we show in Sec. Il how Schdinger’s dispersion 1 he symmetry of this matrix®" =D") permits the use of
relation is uniquely suited for this purpose. the compact but sometimes vague dyadic notatfon ex-

This symmetry argument seems to be unique among pla@MPple, v/ k= dv'/dk;). For example, the symmetry @'
sibility arguments leading to de Broglie’s postulates. De Broimplies that ¢/dx)(xD-k) = (9l dx;) (kD ky) =2D" k;
glie’s arguments are based largely on special relativity, a 2k-D= 2D (written by hand as R- x). We sum over
topic not yet fully grasped by students as they begin to learfiepeated indices unless otherwise stated. The use of both
about wave-particle dualif* An entirely different class of Superscripts and subscripts is optional, but facilitates a tran-
plausibility arguments(Refs. 5 and ¥ link the classical Sition to nonorthogonal coordinate systems.
Hamiltonian to the dispersion relation via substitutions such The symmetry ofD" also permits the coordinate system
as p—fik— —ialax. Although this argument leads directly 0 be rotated so that the matrix is diagonal. Henceforth we
to de Broglie’s relations, it requires a presumption that theShai" assume that this rotation has taker21 place, and that
classical free-particle Hamiltonian K4(p,q)=p%2m. Few (P D*.D~) represent the eigenvalues &®/okdk in the
people would object to this assumption, of course. NeverthelX:Y:2) directions, respectively. Further simplification occurs
less it is fascinating to see the classical free-particle HamilWhen the dispersion refation is such that the angular fre-
tonian derived solely from the fact that it represents the lim-dUeNCy depends on the magnitude of the wave number but
iting case of a wavepacket. not its direction,o=w(|k|)=w(k). The chain rulejw/ sk

Although most textbooks introduce the coherence time for= (¢@/9K)(9k/ k), implies

=gv/ok. (5)

Schralinger’s equation as=2ma?®/%,? one advantage of N I I Y

the more general form of ER) is that numerical evaluation v'=— o (Kitkatkg) M =— 1 (6)
in terms of fundamental parameters is not always required, o o o
especially if one considers the coherence length, defined as i w9 j i k'k\ v KK dv
v7=(dwl/IK) 7. For any dispersion relation of Scliager’s D ok ﬁ_ki(k Klv)=| & - k@ ke
form, o=A+Bk?, the coherence length for a Gaussian : (7

wavepacket isp 7= 26! k_47.TNa’ whereN is the, ”.“'.“!ber. where 8" is the Kronecker(identity) matrix. If the medium
of wavelengths contained within the wavepacket's initial size,

Sandard deviion i concept can b applist east  —opoorind, e WAYe fs salomc. e lose 1o generaly by
qualitatively to an atom, the difficulty with using wavepack- H k=0 unless=1 Al t in Eq.(7) tonal

ets to model low order atomic states is easily recognized; ENce.K =5, Uniess = L. erms n £q.{7) proportiona
The wavepacket would lose coherence and cease to be'@ kikj vanish, except thexx term corre_spondmg m’:ijj
wavepacket as it makes approximately one orbit. =1. However, nonzeryy andzzterms arise fromd/k) 6

Strictly speaking, Egs(1) and (2) do not describe the N EQ. (7). Thusd“w/dkdk is given by

spreading of an electron wavepacket near an atomic nucleus Julok 0 0

because the spatial variation in the potential enedy,), i 0 K 0
violates the assumption of spatial homogen2iBy Ehren- D= v . ®)
fest's theorem, wavepackets of Sctlimger’'s equation obey 0 0 vlk

Hamiltonian equations of motior,= dw/dk, k= —dw/dr, The three diagonal elements are the eigenvalés
w@=dJw/dt." Here the wavepacket's coordinates in A wavepacket is formed by multiplying the plane wave,
(w,k,r,t)-space represent expectation values, amd exdik-r—iw(k)t], by a wave number amplitude factor,
=w(k,r,t) is a classical Hamiltonian These same canoni- ¢(k), and then integrating over wave number. The integra-
cal equations of wavepacket motion also describe other situion is greatly facilitated by the change of variablass k
ations in the eikonal limftthat include solid-state physis, —k,, &=r—vt, and 5(x) = #(k). This change of variables
plasma wave$,and general relativity.The consideration of also facilitates the analysis of a one-dimensional Gaussian
the spreading of a wavepacket when the dispersion relatiowavepacket of Schainger’s equation often encountered in
exhibits such spatial inhomogeniety is beyond the scope dhtroductory textbooks,because it converts the problem of a
this papef moving wavepacket into that of a stationary one:
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7(k) is not real:(i) Multiplication of » by a complex number
. has no consequendg.) Multiplication of 7 by exgircrg] is
9) not permitted because it shifts the wavepacket away from
the origin. (i) In one dimension, multiplication by
If the amplitude 7(x) represents a Gaussian wavepacketexyix-M k] shifts the time when a Gaussian wavepacket
nxexy —(a-x)?], then the components/, represent stan- converges to a minimum value of uncertainyxAk=1/2.
dard deviationsin £ spacg along each of the three principle But in three dimensions, this simple interpretation holds only
axes defined by the eigenvaluesDX As one might guess, if strong restrictions are placed aM. In the special case
an initially spherically symmetrical wavepacket =a,  that, M =3D t,, the time when the wavepacket takes on its
=a3) will spread in a spherically symmetrical fashion only minimum size is shifted fromi=0 to t=t,.? (Before that
if all three eigenvalues are equaD{=D?=D?3). This time, the wavepacket had been convergity M is diago-
is easily verified because the three-dimensional integrational, but not proportional t@, then the wavepacket takes on
in Eqg. (9 for a spherically symmetrical Gaussian wave- minimum size at three different times for the three principle
packet separates into a product of three integrals, eadiirections. In this case, the Gaussian wavepacket is never
equivalent to the familiar one-dimensional Gaussian waverealized. We therefore see that non-real values(af in Eq.
packet. An initially spherical Gaussian wavepacket will re-(12) can greatly complicate the meaning of the wavepacket
tain its spherical symmetry only i#/k=dv/dk in Eq. (8). as a state of maximum compactnéssnimum AxAKk). To
Because = dw/ K, this condition can be integrated to show avoid such complications, we henceforth takéc) to be
that the dispersion relation must be of the form=A real.
+BKk?. This completes the argument that Schrodinger's To evaluate the expectation valueg ), we let the tensor
equation for free particleand hence de Broglie's relations operator ¢/dx d/dx) act on¥ in Eq. (12):

. Dig?
l,[/(l’,t)ZWz—f d3K7](K)EX[{in§J—i ZKJt

giko T —iwgt

can be deduced from non-relativistic symmetry conS|der—{92( 7€ aap . S .
ations. — = —| —€S+ip—¢'S
IKIK K\ Ik K
2 2
lIl. NON-GAUSSIAN WAVEPACKETS _ O 9595 |, 9Sn IS
nt+ii2 + 7. (13
IKIK JK Ik K dk  JKIK

We now show how Eqg1) and(2) can be generalized to i N ) .
include a certain class of non-Gaussian wavepackets. ThisWe multiply by »* and integrate ovek space, the term in
class is defined by the constraint thain Egs.(3) and(12)  Ccurly brackets:--} vanishes ify is real. This is most quickly
be real-valued. It is of course no consequence if this realVerified from the requirement that the Hermitian operagrs
valued is multiplied by a complex constant. For wavepack- £ must have real expectation values, but also can be proven
ets of light or Schidinger's equation, this implies that at USing integration by parts, after using the reality pfto
time t=0, the wavepacket's phase is constant throughout an§uPstituten” for " ». BecauseD is diagonal, thgth com-
plane oriented so that its normal is parallel to the wavepackPonent ofdS/dk=—(x-D)t is x;D't (not summed ovey).

et’'s motion. Therefore,
Consider the integral Fourier transform pair inspired by 7
Eq. (9): = 3, % 20 .. ) +2
9.9 (£ & fd '«{ 7" 5102 D) (D st
‘P(g,t):(ZW)’wf e d (s t)exinél, (10) ={1+(t/7ij)?K£ &)o. (14)
where the 0-subscript o€ £),=(¢'¢l), represents the ex-
q)(K,t)=(27T)_3/2f A3V (Et)exd —in£], (11)  pectation value evaluated &0, and
_ 1 igl
O(r,t)= p(r)exp —i —t|=7(x)e'SY, (12) D'D! [ kikj)o

_ B ) _ Equation(14) is the generalization of Eq1). The diagonal
where we have identified the phase associated with wavesiements of Eq(15) represent the generalization of )
packet dispersion a8=S(«,t) = — (1/2)(,-D-x). becauseD' is an eigenvalue of?w/dk;dk; , while (£%) and

Following quantum mechanics, we treatand £ as ob-  (,2) represent variances in position and wave number, re-
servables representing position and momentum, reSpeCt'Ve|¥pectively. For a one-dimensional Gaussian distributiog,

Here the expectation values are most conveniently taken 0 2)122 5 andA k=(x?)2=(2a) !
momentum space, where the components att as a num- ' ’
bers, whileé— —id/ dx becomes an operatbAs the wave-

packet has been tranformed to the origin in batandr V. FRAUNHOFFER DIFFRACTION

space, the expectation values vaniéki=0=(£). We seek . . :

the expectation value of the standard deviation tengof) To model_ the d_|ffract|or_1 of a beam of I|_ght, we Fake_Eq.

=~ (3ldre dlorc). The diagonal components represent the sizé8) as the dispersion matrix witk representing the direction
of propagation, andD=uv/k representing the eigenvalues

(variance of the wavepacket, while the off-diagonal ele- . o
ments are correlation coefficients. along the other twdgperpendiculardirections. Assume also

The careful reader will observe that the condition thatthat the (paralle) x-direction separates as:y(«)
7(r) must be real-valued in Eq12) is imposed as an extra = 7/(xx) 7. (ky, k7). It is sufficient to begin with only one
constraint. Some justification for this constraint can be un-of the perpendicular directions. If we Iétrepresent eithey
derstood by considering three simple modifications wherebywr z, we can define a phasE, in Egs.(10) and (12):
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\P(g,t):(zw)*”?f dx 7(k)eF(), (16)
2 2
F(K):—%Dth‘l‘Kf:_%Dt(K—Dit +2§_Dt'
(17

At large timesF(«) varies so rapidly that ex{i) acts as a
Dirac delta function,8(x— «g). In Eqg. (17) this occurs at
ko=&/Dt. The integrals over alK of [ cospk?)dK and

[ cospK?)dK both equal ¢/2b)Y2. To the extent that ex-

0~ ¢/x<1 is the angle with respect to the optical axis:

[
W(&t)= ZWDt\IIOW ex;{
[ ik
zﬂ_X\POW expikA€),

whereA{ is a pathlength correction to the distance along the
optical axis:x+ A€~ (x?>+ &?)2. The small-angle approxi-

Sin(EW/2Dt)
EW/2Dt

sin(kWer2)
KWor2

igz)
2Dt

(21)

tremely rapid oscillations causes a function to be effectivelynation, <1, is not required in traditional treatments of

zero, we have
1/2

Fraunhoffer diffraction, where sifl) would replaced in Eq.
(21).°> The need for this approximation can be seen from the

truncated Taylor expansion at E@l). Light that has been
diffracted by a large amount represents wave number far
from the center ak,, which is aligned along the direction.
Because the real part of the left-hand side is positive for anyor light, the higher order terms in E¢) do not vanish.
sign of b, we should choose the branch for which the real Diffraction by a rectangular aperture is obtained using the
part on the right-hand side is positive. This choice yields arsame methods outlined above. The result is the product of
expression that can also be obtained using the method aefvo terms such as given by E¢R1). The same factor of
steepest descet: x~ Y2 appears in both terms. In this small-angle approxima-

i £ ftion, X can be_ replaced by the distance to the slifThus the

\ /ﬁé< K— ﬁ) intensity of light far from a rectangular slit obeys the ex-

Consider diffraction by a slit of widthW, with ¥ repre-
senting the uniform intensity at the slit. HencB(&,t=0)

pected 17 radiation law.
=V¥,, and Eq.(12) suggests that)(x)=®P(«,0). Therefore
Eqg. (11) becomes an expression fas, which yields upon
integration(at the sli}:

7(K)=B(x, t=0)

lim e/PK’=

b—

2b

8(K). (19)

i

2Dt (19

lim eiF(")zex;{

t—oo
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In a recent paper on the teaching of quantum mechaniciature given by Lazare Carnbtlistorians have recognized
D. F. Styeret al. discussed nine formulations of quantum this formulation as the only one based on principles that are
mechanics in order to gain some perspective for teachingntirely supported by experimeritszurthermore, it is the
quantum mechanicsin Appendix A the authors list the dif- only formulation able to suggest the basic ideas of thermo-
ferent formulations of classical mechanics known to themdynamics, whose main author was the son of Lazare, Sadi
However, this list omits a formulation of a very different Carnot* Remarkably, the theories of Lazare and Sadi Carnot
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both share the following characteristic features:they dis-

regard absolute space and trajectori@$;they make use of E m;U;-a; Xr; =0, (6)

discrete timgtime evaluated before and after a proge&s :

they consider extended bodies rather than point-masgggs; or, using the properties of the triple product:

their theories are based on the physical notion of work, while

neglecting the notion of forcefe) in agreement with

D’Alembert, they disregard action at a distand®); their 2 m; w-r; XU;=0. 7)

theories are designed to solve the problem of evaluating the '

optimum efficiency in machines performing energy conver-pye to the arbitrariness ab, we obtain

sions; and (g) their theories make use of elementary

mathematics—nothing beyond exponential functions—

instead of differential equations. > mir; XU, =0. )
L. Carnot's mechanics is essentially a theory of interacting i

bodies by means of collisions. A collision is regarded as theand from Eq.(4) we have

basic phenomenon. In particular, continuously accelerat

motion is obtained as a limiting case of a system driven by a

series of pulses. The notion of Newtonian force is dismissed 2 mr, XW, = 2 mir; XV, , (9)

and masterly criticized. Newton’s second law is replaced by

L. Carnot’s second fundamental equation for a system of

bodies which is the conservation of the total angular momentum. It

is interesting to observe that L. Carnot was proud to propose
a “new theory,” nowadays recognized as a theory of
E meUs U =0 ) symmetries. (Note that such a theory was 'proposed 50 years
R before the celebrated work of Galois, which was not appre-
ciated until twenty years latgrincidentally, because the so-
wherem; is the mass of théh body, U; is the velocity lost  |ution of the collision problem is expressed in terms of ve-
by that body during the collision, angl is a velocity called locities, we have to solve the conservation laws as
by him “geometrical motion,” that is, a motion whose re- algebraic—trigonometric equations; these equations are an
verse motion is not obstructed by the geometrical configuraexample of poin{g) in the above.
tion of the system, owing to the impenetrability of the bod- We now compare Carnot’s formulation of mechanics with
ies. By disregarding L. Carnot’s obscure arguments forspecial relativity. Both theories can make use of the hyper-
supporting Eq(1), it is easy to recognize it as an extensionbolic geometry. Indeed, the main equation in L. Carnot’s
of the principle of virtual velocities to the collision of several formulation, that is, Eq(1), deals with the product of two
bodies. vectors {U;,u;) applied at the same point. As a consequence,
Even more interesting is the development of his theorythis formula does not depend on the Euclidean axiom of
from Eq. (1). Let us consider the casg=constant, that is, parallel lines and the underlying geometry can be either Eu-
the same translation for all bodies; because it is a collectivelidean or hyperbolic geometfyOn the other hand, special
motion, it can be reversed and hence constitutes a geometnelatlwty can be formulated, as first done by Sommerfeld in
cal motion. From Eq(1) we have 1909, in veIocny spacé,whose geometry turns out to be
hyperbolic® Hence, there is no substantial difference in the
underlying geometry of special relativity and classical me-
> mu-U;=0 or u->, mU;=0. (2)  chanics when the latter is considered in L. Carnot’s formu-
i i lation in velocity space; both may be linked together by the
same geometry.
Some recent suggestions have introduced special relativity
in a straightforward way, by essentlally generalizing the clas-
sical conservation lawSOne can view these suggestions as

Due to the arbitrariness af, it follows that

zi m;U;=0. (3 extensions of Carnot's formulation. Finally, in Carnot's for-
mulation, as well as in special relativity, the concept of ac-
Because tion at a distance is absent. We recall that in 1905 the con-

ceptual difference between classical mechanics—in
U =W —V. 4) Newton's formulation—and special relativity was a dramatic
: b one; this difference is drastically reduced when L. Carnot's
whereW; is the initial velocity of theith body andV; is the rather.than Newton’s formulation of classical mechanics is
final velocity, we finally obtain taken into account. _ _

In addition, in Carnot’s formulation of mechanics, a super-

position principle for geometrical motion holds in analogy

S mw=> mV;, (5) vv_ith th,e superposition principle for waves, including Schro

- dinger’s wave mechanics.

The various formulations of classical mechanics can be

which represents the conservation of the total momentum ofrouped according to two basic criteria. One criterion con-

the system. cerns the kinds of mathematics that they use: while L. Car-
Next, consider another geometrical motiam= wXr;, not's formulation makes use of algebraic mathematics, all

that is, a rotation of the system with angular velocitty other ones make use of calculus. The other criterion concerns

around a fixed axis. In this case we have the different ways of organizing a scientific theory. Accord-
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ing to L. Carnot, a theory can be internally organized accord-°R. DugasHistoire de la Meanique(Griffon, Neuctizel, 1956, pp. 309~

ing to two models: the purely deductive mod&ihere one 317. See also A. Drago and S D. Manno, “I principi della meccanica

has to take out all from one’s own bag” of a few axionasmd secondo Lazare Camot,” Epistemologl?, 305-330(1989 and A.

the “merely empirical” modef® These two models can be Drago. ‘Le lien entre matheatique et physique dans la canique de

compared with those suggested by Einstein, namely thelazare Carnot, Lfflza_re Carot ou le Savant-Citoyeedited by J.-P. Char-

model of “constructive theories(like statistical mechanig¢s gig (Presse de I'Universitele |a Sorbonne, Sorbonne, 1990p. 501~

and the modell of the “theprigs .of. pri_nciple"(like e Gillispie, in Ref. 2, Chap. iii D.

thermodynamics* These two criteria distinguish the differ- s camot,Principes in Ref. 2, p. x; A. Drago: “The birth of symmetries

ences between the various formulations of classical mechanin theoretical physics: Lazare Carnot's mechanics, Symmetry of Struc-

ics. Whereas Newton’'s mechanics is a deductive theory andture, edited by G. Darvas and D. Nagydung. Acad. Sci., Budapest,

makes use of the calculus of infinitesimals, both L. Carnot 1989, pp. 98—101.

and S. Carnot’s theories are empirical theories and make us®. Adler, A New Look at GeometriDay, New York, 1966 pp. 253-257.

of purely algebraic mathematics. ’A. Sommerfeld, “Ueber die Zusammensetzung der Geschwidigkeiten in
The analysis of the basic differences in the formulations of der Relativtheorie,” Phys. Z10, 826-829(1909. _ _

classical mechanics can be useful in characterizing the widéB: A- RosenfeldA History of Non-Euclidean Geomet(gpringer, Berlin,

spectrum of the possible formulations of quantum mechanicg %88 pp. 270-272. o _ .

(for example, matrix and wave mechar)i(%in order to sug- See W. C. Davidon, “Consequences of the inertial equivalence of energy,

. . . . Found. Phys5, 525-541(1975 and J.-M. Ley-Leblond, “What is so
gest a more suitable attitude for teaching this theory. ‘special’ about ‘Relativity,” in Group Theoretical Methodsdited by A.

Jenner(Springer, Berlin, 1976 pp. 617-627.
10, Carnot,Essaj in Ref. 2, pp. 102—105; anBrincipes in Ref. 2, pp.
Xiii—Xvi.
M. J. Klein, “Thermodynamics in Einstein’s thought,” Scienb&, 505—
Principes Fondamentaux de I'Equilibre et du Mouvem@rapelet, Paris, 516 (1967); A. I. Miller, Albert Einstein's Special Theory of Relativity

1803. For a sketch of his life and his wide scientific work, see the corre- | (Addison—Wesley, Reading, MA, 1981pp. 123-142.

sponding issue irDictionary of Scientific Biographyedited by C. C.  With A. Pirolo, | have suggested a variant of T. F. Jord@oantum Me-
Gillispie (Scribner’s, New York, 1971 A more comprehensive presenta- ~¢hanics in Simple Matrix ForniWiley, New York, 1986 and have devel-

tion of his scientific work is in C. C. GillispieLazare Carnot Savant ~ oped an approach to quantum mechanics based on symmetries. See A.
(Princeton U.P., Princeton, NJ, 197An anonymous referee suggested a Drago and A. Pirolo, “Quantum mechanics reformulated by means of
reference to Christopher Tong’s letter, “Various formulations of classical symmetries,” inThe Foundations of Quantum Mechanieslited by C.
mechanics,” Am. J. Phys70 (7), 664 (2002. Garola and A. RosgiKluwer Academic, Dordrecht, 1995pp. 229-237.

dEJectronic mail: drago@unina.it

ID. F. Styeret al, “Nine formulations of quantum mechanics,” Am. J.
Phys.70 (3), 288—297(2002.

2L. Carnot,Essai sur les Machines en’Geal (Defay, Dijon, 1783 and

Comment on “Delta functions in spherical coordinates and how to avoid
losing them: Fields of point charges and dipoles,” by S. M. Blinder
[Am. J. Phys. 71 (8), 816—818 (2003)]

Ben Yu-Kuang Hu®
Department of Physics, University of Akron, Akron, Ohio 44325-4001

(Received 8 August 2003; accepted 23 September)2003
[DOI: 10.1119/1.1625928

In a recent paper,S. M. Blinder addressed the apparent 1 49

disappearance of th&function that is generated By?|r| ! Vi=— i+, (1a)
. . . . r ar  or

when the spherical coordinates expression of the Laplacian
V2 is used. Blinder showed that the “lost” delta function at
the origin can be recovered by a judicious introduction of an
ad hoc step function sgrj(to the|r| ! potential. The pur-
pose of this comment is to show that the insertion of this step Vz—l a_Zr Y. (1b)
function can be put on a more rigorous footing. ror2 '

When spherical coordinates are used, it is conventional to
let the radial distance range from O to», and the polar
angle 6 range from 0O tow. However, the occurrence of the o ) o )
origin at the beginning of the range ofis a source of am- where- - - signifies terms with derlvatl\{es with respeg:hto
biguity [see, for example, Eq$7) and (38) in Ref. 1] and and 6. However, becausecan be negative, the potential of a
contributes to the seeming disappearance of the delta fun@0int charge at the origin must be written gs| "
tion of V2|r| L. To avoid these problems at the origin, we = (%)~ *?=sgn¢)/r. This is the mathematical justification
can instead let range from— to +, andd from O ton/2.  for the insertion of the sgn) term.
This choice does not affect the various spherical coordinate The & function in V2|r| ! is recovered as in Ref. 1. For
expressions of the Laplacian, example, the Eq(la) form of V? gives
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gel_1d,d 1| 1d r3 V21_1d2r
R O T N T 7 art I
o 1d _248(r) 1
= r—zasgr(r)— 2 —;ﬁsgrrr)
=—475(r). (2 2d 501)
=——0(r
The last equality in Eq(2) results from rdr
0 2m /2 _ 25(r)
f f fdré?’(r):j rzer’ d¢f sin#des3(r) T
- 0 0
Il
all space :—477(93(['), (4)
ZZWJW r2drsi(r) where we have used the identityd 5(r)/dr]=— &(r).?
@Electronic mail: benhu@physics.uakron.edu
o o(r) !S. M. Blinder, “Delta functions in spherical coordinates and how to avoid
= 277] radr ER 3 losing them: Fields of point charges and dipoles,” Am. J. Pils.816—
—o 2w 818 (2003.
. . . 2This identity can be shown by insertimfd 8(r)/dr] into an integral over
Note that the amblguous mtegr_ﬁE’é(r)c_ir that occurs in r of a well-behaved test functiorf(r) and integrating by parts:
Ref. 1 is absent here because thategration runs from-o J2 (O r[da(ry/dridr = — [ [f(r)+r(df/dr)]s(r)dr = — [ f(r)
to . Using Eq.(1b) for V2 gives s(r)dr.

Comment on “Algebraic approach to the radioactive decay equations,” by
L. Moral and A. F. Pacheco [Am. J. Phys. 71 (7), 684—686 (2003)]

T. M. Semkow?
Wadsworth Center, New York State Department of Health,
and University at Albany, SUNY, Albany, New York 12201-0509

(Received 15 July 2003; accepted 1 October 2003
[DOI: 10.1119/1.1629092

The radioactive decay chain equations were originally We define a vector of radioactive atomsN'
solved by Batemanusing a Laplace transform method. This =(Ny,....Ny), and matrixA with elementsA;;=X\;b;; for
approach was recently reconsidered by Pressyafibe ma- i>i, Ai=—\;, A;=0 for j<i, and express Eql) in
trix (or algebraig solution, recently described by Moral and 1 atrix f](J)rm b
Pachecd,was first introduced in Ref. 4. The purposes of this
comment are to outline the matrix solution with branching,
to give physical applications of the solution, and to give new  —_ — AN. 2)
insight when all the decay constants in the chain are equal.

d.ffonsiqpir a br?nching decay chain described by the set Qfyhep 4 the\; are different, the matrix\ is diagonalizable
erential equations (P~1AP=diag(-\,)), and the solution of Eq(2) is’

dN;,

5o =~ MNi, (1a) N(t)=Pdiage MH)P~IN(0) . ®)
The methods for calculating the matiixand its inversé>~*

dNe 1ot were given in Ref. 5.

_122 NbiN— NN (j=2,...0), (1b) The matri_x solution, Eq(;%), has been used_ to study the

dt =1 nuclear fissionB-decay chains, where branching frequently

. , . occurs due to nuclear isomerigiMAnother application is to
whereN;=N;(t) is the average number of radioactive atomsihe gecay and growth of radon daughteEquation(3) can
at timet, \; is the decay constant,is the position index in  jncorporate a decrease of activity due to exponential decay
the decay chain consisting of components, and; is @  during counting, as well as chemical separations, in a general
branching fraction from componento | (2?=i+1 bji=1). and compact wa§.Equations of the type of Eq1) are ex-
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amples of compartmertor box) models, which have numer- decay’? By means of the generating functios(z,t)
ous applications. One such general treatment of the matrix Ejzon(t)Zj, Eq. (7) can be coverted fo
solution in health physics is in Ref. 7.

There is a limiting condition of the matrix solution, when
some or all\; are equal. Then) is singular and no longer
diagonalizable. Although this case is less likely in nuclear
physics because the decay constants are generally different, — =—)\(1-2)G, 8
it may nevertheless be of importance in general compartment
modeling. In addition, it provides interesting physical in-
sight.

Consider a case for which all the; are equal, there is
only sequential decay in the chain, that is, no branching, anm
the boundary condition il;(0)# 0, N;(0)=0 for j>1. One
way of solving this case would be to consider the general with an index shift.

s_oluhon and take the I|m_|'& tFor_e)\x?mpIe, for=2, Eq. (3) It is remarkable, that thaveragenumber of atoms of the
gives Np(t) =Ny (O)ni[(e "' —e *2)/(Aa—A1)]. By ré-  chain members for sequential decay, when all the decay con-
solving the egponentlal series and taIgng the |lmlt,_ A2 stants are equal, is governed by the Poisson distribution,
—\, we obtainN(t) =N (0)\te™ . This procedure is t00  similar to thefluctuationsin radioactive decay. The physical
cumbersome in the general case. It is more convenient tgrigin of this result lies in the renewal process. An atom that
rewrite Eq.(1) as has decayed in the chain with equal decay constants is re-
newed, that is, it continues to decay with the same decay
constant, and only its position index in the chain has incre-
ﬂ_ AN (4a) mented. It is known that such an ordinary renewal process
dt b leads to the Poisson distributiohThe mean of this Poisson
distribution, Eq.(6), is equal toAt, which can take any
value. There is an important difference from the Poisson
j . fluctuationsin radioactive decay, howev&.To satisfy the
ar - MNj-1=Np. (=2...n). (4b)  poisson fluctuations, exemplified by the decay of a long-
lived radionuclide, we must have the total number of radio-
active atomd\N>1 and the probability of a single decay 1
If we apply the Laplace transform to Eq. (4), we obtain —e M=)\t<1. The mean in this case is equal h\t,
which can take any valu€. The small number of atoms that
decay in a short time intervdl is much less than the total
~ number of atoms and, therefore, the decay does not disturb
Nn($)= Tg3nynNa(0): () the distribution.

hose solution isG(z,t)=e~ "2 |t is known from the
eory of statistical distribution8 that the exponential gen-
rating function is a Poisson distribution given by E6)

n-1

3E|ectronic mail: tms15@ health.state.ny.us

The functioneSt/(er )\)n has a pole of theth order. and the H. Bateman, “The solution of a system of differential equations occurring
! in the theory of radio-active transformations,” Proc. Cambridge Philos.

residue theorem yields Soc. 15, 423—427(1910).

’D. S. Pressyanov, “Short solution of the radioactive decay chain equa-
tions,” Am. J. Phys.70 (4), 444—445(2002.

()\t)”‘1 3L. Moral and A. F. Pacheco, “Algebraic approach to the radioactive decay
- -\t : »
N,(t)=N;(0) e M, (6) equations,” Am. J. Phys71 (7), 684—686(2003.
n 1 (n _ 1) |
: 4G. P. Ford, K. Wolfsberg, and B. R. Erdal, “Independent yields of the

isomers oft*3Xe and!**Xe for neutron-induced fission 8#U, 2%, 2%y,
. . ) . . 2%y, and®*?Am™,” Phys. Rev. C30, 195-213(1984.
Before interpreting Eq(6), let us shift the index in Eq. (4), 5T. M. Semkow, A. C. Wahl, and L. Robinson, “Yields of In and Sn prod-
so that it starts from 0, and let us defire;=P;(t) ucts from thermal- and 14-MeV-neutron-induced fissior?80,” Phys.
=N;(t)/No(0) as the probability of finding a radioactive Rev. C30, 1966-19751984.

L . 5T. M. Semkow, P. P. Parekh, C. D. Schwenker, R. Dansereau, and J. S.
atom at positiorj in the chain. Then, from Ed4), Webber, “Efficiency of the Lucas scintillation cell,” Nucl. Instrum. Meth-

ods Phys. Res. 853 515-518(1994.

P. A. Assimakopoulos, K. G. loannides, and A. A. Pakou, “A general
d Po multiple-compartment model for the transport of trace elements through
a9t = Mo (78 animals,” Health Phys61 (2), 245—-253(1991).

8H. Bateman, “On the probability distribution of particles,” Philos. Mag.
Ser. 620 (118, 704-707(1910
°N. T. J. Bailey,The Elements of Stochastic Processes with Applications to

dpP. the Natural Science8Niley, New York, 1964, p. 69.
-1 =NPj_1—P) (j=1). (7b) 1ON. L. Johnson, S. Kotz, and A. W. Kemflnivariate Discrete Distribu-
dt tions (Wiley, New York, 1993, p. 151.

1D, R. Cox,Renewal TheoryMethuen, London, 1962p. 29.

12The Bateman papeiRef. 8 is cited in statistical text§Ref. 10 histori-
Equation(7) was first solved by Bateman in another of his cally as a second derivation of the Poisson distribution.
seminal papers on statistical fluctuations in radioactivé*Note thatN was omitted in Ref. 8.
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Comment on “Frustrated total internal reflection: A simple application and
demonstration,” F. P. Zanella et al. [Am. J. Phys. 71 (5), 494—-496
(2003)]

A. A. Stahlhofen®
Universita Koblenz, Institut fu Naturwissenschaften, Abteilung Physik,
Universitasstr. 1, D-56075 Koblenz, Germany

(Received 23 May 2003; accepted 17 October 2003
[DOI: 10.1119/1.1632492

In a recent article in this journal an interesting applicationan order of magnitude smaller than the longitudinal shift.
and demonstration of frustrated total internal reflection(ii) Many references to applications and demonstration of
(FTIR) was presentedlTwo items should be noted to place FTIR Ta” be found '”Ba review article that appeared in this

. S . . ournal some time ago.
this article in a proper contexti) The physics of FTIR as J 9
well as the propagation of the light beam in the piece of glassigjectronic mail: alfons@uni-koblenz.de
sketched in Fig. 1 of Ref. 1 is a very simplified picture: the 'F. P. Zanella, D. V. Magalhaes, M. M. Oliveira, R. F. Bianchi, L. Misoguti,

: : - e and C. R. Mendoca, “Frustrated total internal reflection: A simple appli-
aUt.hor.S did nOt. discuss the .G(?OS_”dben shift Ir,‘ FTIR'. cation and demonstration,” Am. J. Phy&l(5), 494—-496(2003.
which is a very important deviation from geometrical optics 2a. Haibel, G. Nimtz, and A. A. Stahlhofen, “Frustrated total reflection:
(predicted by Newton and discussed by him in his book onsThe douli]lfh pfrism rthiSitﬁd'" Phys. Relv.EB(l), o47fe‘>01(2oodj). | |

. . . . . . A. A. Stahlhofen, “The photonic tunneling time in frustrated total internal
opuc; C|ted.as Ref. 3 .|n Ref.)lTh|§ shift descnbe; a.lon- reflection,” Phys. Rev. /62(2), 012112(2000).
gitudinal shift for polarized beams in the plane of incidence “References for the transverse Goo$na¢teen shift can be found in Refs. 2
and can be as large as 4 to 5 wavelendthRsr unpolarized and 3. _

. | larized b d shift dicul 5S. Zhu, A. W. Yu, D. Hawley, and D. Roy, “Frustrated total internal re-
or circular polarize eams, a second shiit perpendicular toflection: A demonstration and review,” Am. J. PhyS4(7), 601-607

the plane of incidence can be observed, which is, however,(1986.

The validity of the Helmholtz theorem

F. Rohrlich®
Department of Physics, Syracuse University, Syracuse, New York 13244-1130

(Received 11 August 2003; accepted 7 November 2003
[DOI: 10.1119/1.1637041

The Helmholtz theorem states that a vector fisidx,t), At first, it might seem that retardation may indeed make a
in three-dimensional space can be separated uniquely intifference because it introduces an additional spatial depen-
two components, a transver¢solenoidal component,V,, dence into the integral that expresses the field in terms of its
and a longitudinal(irrotationa) one, V,, such thatv=V,  sources. However, the Helmholtz theorem has nothing to do
+V,, wheré with the source of the vector field that is being separated.

Therefore, it holds also for retardédnd advancedfields.
Because this issue has bearing on causélitg propaga-
V-V;=0, VXV,=0. (1)  tion of fields with the speed of lightand is encountered
often in electrodynamics, further discussion is desirable. As a

The time dependence df is irrelevant. This irrelevance can Preliminary remark, note that in the Coulomb gaugesba-
also be seen from the explicit expressions ¥grandV, in  lar potential ¢ satisfies the Poisson equation as a conse-
terms of V as given in Jacksor’sequations(6.27 and guence of Maxwell's field equations and is therefaret
(6.29. causal Nevertheless, thtotal fields are causalindependent
This theorem has recently been challenged by Herasof the gauge. That fact has been known for a long firits.
(cited in the following adH). He claims that there is a “com- proof doesnotinvolve the Helmholtz theorem.
mon misconception that the standard Helmholtz theorem The objection to the validity of the Helmholtz theorem
...can be applied to retarded vector fields.” He then proceedtgfers to retardation, that is, to the relation of the field to its
to claim that therefore my papetcited asR) is incorrect.  sources. A vector field that is a source, therefore, should not
The purpose of this note is to show that Heras’s claim isencounter that objection. In electrodynamics, one can there-
false, and that the Helmholtz theorem also applies to retardefre define the separation of the field, in terms of the
(and advancedvector fields. separation of its sources. For the equation
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OE=4m(djlt+Vp), 2) last term in Eq(H10) separates into two terms according to

a separation of sources into transverse and longitudinal onek, 1t and(c) the sum of the three equations is exactly

results in theretardedelectric fields the sum ofE, and E, given in Eq.(3) as well as inR. It
follows that the separation advocated by Heras is entirely
Aj(x") arbitrary.
Ei(x)= —47Tf DR(X—X’)Td4X' (transversg, The conclusion is therefore that the Helmholtz theorem

(33 applies to three-vector fields ahytime dependence, includ-
ing retarded or advanced time dependence on its sources, as
i (x") long as the sources of these fields are bounded in space.
at’ a ; . ;
Electronic mail: rohrlich@syr.edu
(Iongitudinab. (3b) For the present purpose, the best reference is J. D. Jacksassical
ElectrodynamicgWiley, New York, 1999, 3rd ed., pp. 241-242.
It is easy to verify that the conditiond), applied to these 2J. A. Heras, “Comment on ‘Causality, the Coulomb field, and Newton’s
electric fields, hold for Eq(3). This involves integration by  law of gravitation, ” by F. Rohrlich, Am. J. Phy/1(7), 729(2003, cited
parts with the assumption of asymptotic boundedness of theasH.
source;; 3F. Rohrlich, “Causality, the Coulomb field, and Newton’s law of gravita-
On the other hand, Herasclaims the decomposition — tion,” Am. J. Phys.70 (4), 411(2002, cited asR.
(H8), (H 9)' and HlO) of his paper. If those equations are 4C. W. Gardiner and P. D. Drummond, “Causality in the Coulomb gauge: A
added, we find thata) the B dependent terms cancéh) the ~ direct proof,” Phys. Rev. 488, 489748981988

d*x’

E,(x)=—47rJ' Dr(x—x") +Vp(x")

Erratum: “Propagating and evanescent waves in absorbing media” [Am. J.
Phys. 71 (6), 562-567 (2003)]

S. Anantha Ramakrishna?
The Blackett Laboratory, Imperial College, London SW7 2BW, United Kingdom

A. D. Armour
School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom

[DOI: 10.1119/1.1629285

In Fig. 1, the inequality should reat,<e,, and the cap- In the paragraph below E@8), the first sentence should
tion should state: “A wave incident on a dielectric medium read: “In other words, the normal component of the Poynting
with a smaller dielectric constant at an angle greater than theector is only nonzero ig;#0.”
critical angle, 8> 6., results in an exponentially decaying Also, Eq.(24) should read:
wave in medium 2.” Similarly, the sentence in the third para-
graph of the left-hand column of p. 562 should read: “The 2k,
physics of evanescent waves is readily understood by con- T= K K@
sidering what happens when light is shone on a nonabsorbing (ke Temt ks eal
medium at an angle greater than the angle of total internal Although these errors are regrettable, they do not affect
reflection from a medium with higher refractive index.” any of the main results of our paper.

In the paragraph below E¢b), we should have stated that

an exr_:lm!nation O_f the Poynting vector shows that no energypresent address: Department of Physics, Indian Institute of Technology,
flows inside medium 2 normal to the interface. Kanpur 208 016, India.

(24
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