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Expressions are derived for the electromagnetic fields of guided waves which are analogous
to the quantum-mechanical equations representing barrier tunneling. This analogy is achieved
by comparing the propagation constant of the Schrodinger time-independent wave equation
with that of the electromagnetic wave equation in waveguide and by comparing the de Broglie
wavelength of a particle with the wavelength of the waves that propagate the energy. This
results in an expression relating the form of an arbitrary one-dimensiona] energy barrier to the
physical dimensions of a section of waveguide. The analogy is tested by the propagation of
energy in the TE;o mode at both the 3- and 6-cm bands for the cases of rectangular and hyper-
bolic barriers. Although evanescent modes are present at the discontinuous regions, the analog
for the rectangular barrier, which is considered to be the worse case, is verified when an effective
barrier length Lt of about 1.2/ is used. This experimental verification demonstrates the possi-
bility of waveguide simulation of quantum-mechanical energy barriers and the practicality of
utilizing an electromagnetic analog for demonstrating the tunneling phenomenon and provides
a method for measurement of the transmission coefficient through an arbitrarily shaped barrier.

INTRODUCTION

WTAVE propagation, whether electromag-
netic, mechanical, or acoustic, is usually
described in terms of solutions to wave equa-
tions. Analogies in which one type of propaga-
tion is described in terms of another become very
useful, for they may provide solutions to prob-
lems that might otherwise be difficult to solve.
Analog relations have been shown to exist!
between wave propagation in crystal structures
and electromagnetic wave propagation down a
transmission line. Periodic structures? in wave-
guides have the pass- and stop-band proper-
ties characteristic of crystal structure. In 1924
de Broglie ascribed a wavelength A to quantum
particles where A=h/p, k being Planck’s con-
stant and p, the linear momentum of the particle.
Experiments verifying the wave properties of
quantum particles have been performed many
times.

Since the wavefunction that describes quan-
tum barrier penetration by particles decays ex-

* This is an abridged version of a paper submitted to the
American University in partial fulfillment of the Master of
Science degree.

L. Brillouin, Wave Propagation in Periodic Structures
(Dover Publications, Inc., New York, 1953).

*R. E. Collin, Field Theary of Guided Waves (McGraw—
Hill Book Company, New York, 1960), Chap. 9.

ponentially, there is reason to believe that this
phenomenon may be expressed classically in
terms of guided (acoustic, electric, mechanical,
etc.) wave propagation. The subject matter re-
ported, therefore, is the investigation of a
classical analog to particle tunneling through
quantum potential barriers, utilizing electro-
magnetic propagation through a section of below-
cutoff waveguide.

WAVEGUIDES

The most commonly used waveguide is the
rectangular waveguide. The propagation of
energy in this guide is represented as normal
mode solutions to the wave equation. By suitable
choice of waveguide dimensions, all modes higher
than the dominant mode are eliminated. Because
of the mathematical simplicity and apparatus
vailable, the TEiy mode is selected for the
study.

The TE, wave is a plane electromagnetic wave
whose E and H vectors are oriented so that the
components FE,=H,=E,=0. The longitudinal
component satisfies the time-independent equa-
tion (d?/dz*)H,+k*H, = 0 where B2 =wue — (x/a)?,
a is the guide cross-section length in the x di-
rection, H,=cos(rx/a)e™, and by Maxwell's
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F1G. 1. Particles incident upon quantum potential barrier
have finite probability of transmission.

equatiorn,
E,=A sin(rx/a)e®?,
H,=—Ak/wu sin (zx/a) e,

where 4 =iwpa/7.

QUANTUM TUNNELING

Quantum tunneling phenomena have their
origin in the wave nature of particles as described
by the solutions to the time-independent Schré-
dinger equation V¥ (r)+ k% (r)=0 where ¢ () is
the Schriodinger wavefunction,

k= (2m/W)[E—V(r)],

E is the particle energy, m is particle mass,
#=h/2x, and the potential V(r) may have any
functional form.

Let us consider the one-dimensional problem
of particle transmission through a region having
a potential energy greater than the particle
energy, as seen in Fig. 1. Classically the particle
rebounds. According to quantum mechanics,
there is a probability of penetration through the
region. The transmission coefficient is a measure
of this probability. The analysis involves finding
solutions to the time-independent equation
(@/d22)y+ k2 =0 where k2= 2m/R)[E—V (3) ].

The form of this equation suggests an analogy
between the waveguide and quantum-mechanical
propagation constants. This is somewhat uncon-
ventional in the sense that the usual electrical-
mechanical analog uses electronic elements (in-
ductors, capacitors, etc.) to describe mechanical
phenomena. Moreover, the propagation constant
in waveguide is a function of the geometrical
structure and therefore offers a physical insight
into the mathematical description of the quan-
tum barrier. With this in mind, the guide proper-
ties are analyzed geometrically in Table I and
Fig. 2.
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TasLE I. Comparison of quantur barrier potential
and waveguide discontinuity regions.

In region I of Fig. 2(a)
E=(2mE/#)}=12x/\z

where Ag=deBroglie wave-
length of particle.

In region I of Fig. 2(b)
k=[wpe—(x/a) P

where 2a=), the -cutoff
wavelength

[ is generator freq.

)\ is wavelength of freq.

=(2r/M[1~ (%/24)2]*
In region 11 of Fig. 2(b)

In region 11 of Fig. 2(a)

if E>Vy

k= {(2m /W) E— V(Z)]z*
=Qa/A)l1-V(2)E]

if E<V,
k= {(2m/®)[V(z)— E]}}
= 2=/ V(z)/E-1]

if A<2a
k=(2r/N {1 —-[\/2a(2) }*
if A>2a

k=Q2x/M{M2a() 1]}

Let s be a proportionality constant between

the propagation constants of the two systems.
Then

E(QM) =sk (waveguide), (1)
2a/Ag= Qus/N)[1— (/2a)* P
for V(2)=0,x<2a, (2a)
Qr/Ap){1-[V(5)/E]}*
= (2ms/N){1—[\/2a(2) J*}?
for E>Vy, A<2a, (2b)
E T V(Z) H
i
(a)
1 o
1 )
i
a az  a’ |

(b)

F16. 2. Comparison of {a) quantum barrier potential and
(b) waveguide discontinuous regiomns.
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Qa/Ne){[V(8)/E] -1}
= (2ws/M{N2a(z) I -
for E<Vy, 20/ <A<2a. (2c)
Let us consider the case for E<V, Dividing
(2a) by {2¢) and squaring, we have
E (2a/2)2—1
V(z) [a/a(z)]—

If we assume that the generator frequency
simulates the particle kinetic energy, then as
E-— Vi, A= 2a¢ and

Vo B (¢/a")t—
V(@ [e/a@P—1

In general V(z) = Vig(z), where g(2) is the barrier
function, and V, is the maximum value of the
positively shaped barrier or is the minimum value
for the negatively shaped barrier. Then

. _[0/a@F—1
S a2 —1

)

and
a(@)=a{l+g(®)[(¢/ad')?—11}% 4)

To describe this function in terms of the coordi-
nate system, we note that

x(z)=3la—a(z) ] (%)

RECTANGULAR BARRIER

The rectangular barrier (see Fig. 3) has one
of the simplest potential shapes used in the anal-
ysis of barrier penetration V(z)= Vyg(3) where
¢(8)=0 for 2<0 and z>/, and g(2)=1 for

0<gz<l,. The transmission coefficient? for this
barrier is
1 sinh?k’l,
T1=1+- or E<<Vy, (6a)

4 (E/ Vo) (1 -—E/Vo)
where
= (2n/\y) 1 —E/ Vy)*

Vo

> Z

o] 2y
F1c. 3. Rectangular barrier.

8 R. N. Eisberg, Fundamentals of Modern Physics (John
Wiley & Sons, Inc., New York, 1961), pp. 233-234.
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Fic. 4. Waveguide design for simulation of
rectangular potential barriers.

and
1 sin?t’l,
Tim1d " for E>Vi (6b)
4 (E/V)(E/Ve—1)
where k' = Qu/A)(E/Ve—1)8 and My is the

deBroglie wavelength equal to that particle
wavelength whose kinetic energy equals the
barrier energy. From (2a) we find that as
A — Ay, A = 2a; therefore

Ay=(S/a)[1—(¢//a)* ] )

If we let g be a proportionality constant between
the barrier length Iy and the length of the wave-
guide discontinuity /, then

ly=ql (8a)

and

v/hv=(Ml/a")[1—(a'/a)* ]}, (8b)

where M is the dimensionless constant gs. The
waveguide contour for the simulated barrier is
shown in Fig. 4.

Discontinuities* in waveguides give rise to re-
flected waves and excite higher-order evanescent
modes which decay exponentially with distance.
From symmetry considerations, only those modes
that are symmetrical about ¥=a/2 are excited
by the discontinuity. With a T'Ey mode incident
from the region z<0, the electromagnetic field
in all three regions is expressed in terms of the
transverse components.

Region I:
X
E, W =4, (e 4o ) sin(~—>
a
nwx
-+ Z A sm( )e"kﬂz,
n=3,5, a

) ) i
Hz(l) = YlAl(EZkz"‘i’e_mz) Si[’i(‘*“)

a

_ [nmx
Y, A, sin{ —— JeFnz,
a

4R, E. Collin, Field Theory of Guided Waves (McGraw-
Hill Book Company, New York, 1960), p. 316.

+ %

n=3,5,+
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where

k=wpe— (n/a)?, ko= (nw/a)?—wlue,

Yi=k/op; Y,=kn/ivy, Ai=iwpa/m.
Region II:

w nw

E,®= 3% B, sin[—(x—p)]e’”nz
n=1,3,:+ a’

) _ [ar

+ > C, sm[—— (x —p)]e"‘”z,
n==1,3,000 a’

ad nm
H®= 3% Y.B, sin[—,(x~p):|ekn'z

n=1,3,0+ a

o nw
+ Z Y.'Cn Sin[_j(xup):le—knzr

=18, a

where &,/ = (nr/a’)?—wtue, V' =kn'[ivp.

Region I11:
o [TEy w nrx
E,® =t sm<—>e“"+ >. D, sin(—)ekﬂi
a n=3 ,5, e aQ
T\
H,®=-Yy sin(—)e”‘z
a

% _ [nTx
— Y Y,D,sin| — }Jebn=,
n=8,5,+

Q

The transverse fields are continuous in all three
regions and are equal at the boundaries. In
general, solutions for the transmission amplitude
involve integral equations derived by using the
orthogonality properties of the field equations.
Because of the discontinuous boundary regions,
these equations are lengthy and the solutions are
approximate, This difficulty is avoided by using
a different approach, whereby analysis of only
the lowest-order mode is considered. The anal-
ysis is justified on the basis that only the domi-
nant mode propagates in the above cutoff region,
and that most of the power transferred in the
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cutoff region is accomplished only by a combina-
tion of the lowest-order nonpropagating modes,
which decay in opposite directions. Although the
analysis leads to approximate solutions, the ac-
curacy of the analog may be improved by a
correction factor. Equating the fields at the
boundaries and solving for t/4,, we obtain the
power transmission coefficient T'=#*/4.4.*,
which is approximately

T =143 (B /k)2+2] sinh?k’l,
where
k= Q2r/M[1—(/20)2]F

and

k= Q2u/M)[N2a")?—17F for 2¢' <A< 2a.

By inserting the conditions
V{z)=T,
“ a(z)=ad }
into (3), we have the analog relations
(&'/k)*+ (k/E)P+2=[(E/ Vo) 1—E/ Vo) I

By taking the product of (1) and (8a), we have
E1,(QM)= MFl (waveguide). Except for the
constant M in the argument of the hyperbolic
function, the waveguide and potential barrier
transmission coefficients are identical.

It should be remembered that the waveguide
transmission equation is derived from the as-
sumption that only the lowest-order evanescent
mode transfers the power. Since higher-order
modes do transfer some power as reflections at
the discontinuity regions, additional apparent
signal attenuation of the dominant mode is to be
expected. This additional attenuation may be
regarded as the effect due to a longer effective

FiG. 6. Waveguide simulation of hyperbolic barrier.
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F16. 7. Block diagram of test setup.

guide length. The value of M therefore is con-
sidered as a modification factor that corrects the
analogy between the guide and barrier dimen-
sions. Since a slowly varying discontinuous region
produces few higher-order modes, attenuation is
comparable to that caused by a similarly shaped
potential barrier. For an ideal analog, the value
of M should be unity.
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HYPERBOLIC BARRIER

A slowly varying potential barrier that has the
mathematical form g(2) =cosh™2yz, where 7 is an
arbitrary constant, is called a hyperbolic barrier.
In our case it is convenient to let y=«a/ M, where
a is arbitrary. The transmission coefficient® is

|, cosh’[(x/2) (1 —8m VodI*/la?)1]

T_‘1=1 T h (M / )
sinh?(Mxk/a
8m Vo M*
fOl‘ ———_———< 1’
20l
i —1)}
T-1=1 +COSh [(7'-/2) ;872;0%/:525!2 1) :l
sinh? b/a
" Sm VM2
for -—-_-__—> 1’
o

where k= (2mE/h%)*%,

FiGg. 8. Ratio of particle to barrier energy.
Transmission coefficient for rectangular barrier:
T=[1+£Sinh2(27rlv/)\v)(1—E/Vo)% B

4 (E/Vo(1-E/Vd)
for E/Vy<l. Waveguide experiment: O, lv/\v
=0.60; A, lv/N=0.75; O, lv/Av=0.90; —, theo-
retical quantum-mechanics curves,

PROBABILITY OF TRANSMISSION, T

g

l>/0/
/

N

/

/
/

/

RATIO OF PARTICLE TO BARRIER ENERGY

5L. D. Landau and E. M. Lifshitz, Quantum Mechanics Nonrelativistic Theory (Addison—-Wesley Publ. Company,

Inc., Reading, Mass., 1958), pp. 76-77.
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Fi1g. 9. Ratio of particle to barrier energy.
Transmission coefficient for hyperbolic barrier:

V(Z)="V,cosh2[(a/m)Z].
_ cosh?r (M2 —0.25)7]
T‘[”'s}n‘mM_r(E/vo)é ]

Wavgenide experiment curve: ®. Quantum-me-
chanical theoretical curve: —.
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RATIO OF PARTICLE TO BARRIER ENERGY
E/Vo

The value of «, being arbitrary, is selected to be
a= 2mVy/#%)% Then, 8mVy/HPat=4, and

' cosh?[ (x/2) (4 M2 —1)?
U SMa(E/V)P

T-1=1

The waveguide analog of this barrier is de-
scribed by (4) as

a(gy=a{l+[(a/a")?*—1] cosh2az/ M}~

From (2a) we see that as Az — A,oA — 24/, and
therefore

a=2n/\y,= (vs/a")[1— (a’/a)? ]

If we let ¢ be a proportionality constant between
the barrier length and the length of the wave-

05

guide discontinuous region, then

z(quantum barrier) = gz (waveguide)

and

(az/ M) (quantum barrier)
= (wz/a’)[1— (¢//a)? ] (waveguide)

where M =¢S. The barrier is therefore described
in the waveguide by

BN CE R
cor |-

The waveguide contour for the hyperbolic barrier
is shown in Fig. 6.
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EXPERIMENT

The experimental test setup is that of Fig. 7.
The microwave signal generator is amplitude-
modulated internally at 1 ke/sec. A power bridge
and frequency meter monitor the input signal
through a 20-dB directional coupler. Initially
the variable attenuator is adjusted to provide
linear output crystal drive. Then the test guide
is inserted, as shown, and the variable attenuator
is adjusted to obtain the same voltmeter deflec-
tion (substitution method). The change in at-
tenuator readings is a measure of the transmission
coefficient. This procedure is repeated at each
frequency setting.

The test waveguide with a rectangular dis-
continuity is a section of x-band waveguide with
dimensions a=2.286 ¢cm, 6=1.016 cm, and with
cutoff frequency f,=6.557 Ge/sec. The discon-
tinuous region is centrally located in the guide
and has dimensions ¢=1.5 cm, #=1.016 cm,
!=3.0 cm, 2.5 cm, 2.2 ¢cm, and with cutoff fre-
quency f.=10.0 Ge/sec. From (8b),

L/No= (A/3.0) M[1— (6.557/10.0)*]}

L/ MXx,=0.755, 0.629, 0.554, The measured
values of transmission coefficient (output power
divided by input power, experimental points) as a
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function of frequency (as expressed in terms of
E/V,) are plotted in Fig. 8. The points follow
the theoretical curve for [,/\,=0.9, 0.75, 0.66,
indicating that M =1.19 (approx.).

A test waveguide was fabricated to simulate
the hyperbolic barrier. The dimensions are
a=4.755 cm, &’'=2.725 cm, with cutoff {fre-
quencies f,=3152, f,/=3500 Mc/sec. The over-
all barrier length, as measured from the center,
is 3.0 cm, where departure from the actual hyper-
bolic shape is negligible. The transmission coeffi-
cient for the simulated barrier is displayed along
with the theoretical quantum mechanic curve
(for M=1.15) in Fig. 9. Good correlation is ob-
tained over the energy (frequency) range plotted.

CONCLUSION

Quantum potential barriers have been simu-
lated by a section of waveguide having a par-
ticular configuration, and the particle tunneling
phenomenon has heen simulated by electro-
magnetic propagation in waveguide. When an
effective barrier length of approximately 1.15~
1.19 times the actual length is used, there is good
correlation with theory in transmission coeffi-
cient measurements for both abrupt and slowly
varying potential barriers.



