
The Mass Response, Analytical Analyzed, of a Sinusoidally Driven 
Linearly Damped Harmonic Oscillator

My discussion will use a spring oscillator as a model for mechanical oscillators in general.  Iʼll 
finish with a few comments on the horological implication.

It is widely believed that the amplitude of a driven oscillator is independent of the mass and 
that the amplitude is maximum when the driving frequency is the same as the natural 
frequency of the oscillator.  Neither are strictly correct, as I will now show.

The differential equation describing the sinusoidally driven linear damped spring oscillator is:
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Where b is the dissipation constant, k  is the spring constant, k
m  = 0ω  the natural 

(undamped) frequency, and F0 is the amplitude of the sinusoidal driving force.  Note that the 
mass is explicitly given, often not done when discussing oscillators.  The particular 
(equilibrium) solution is:
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The following graphs show plots of the  amplitude response as a function of the mass.  The 

constant values of F0  and b are 1, and  0
2ω  is 10 (~0.5 Hz).  I have recast the equation, so 
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.  Their respective Qs are calculated from the equation: 
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1 Thornton | Marion,  Classical Mechanics, fifth edition, p. 118, equation (3.52)
2 loc. cit. equation (3.59)
3 op. cit. p.121, equation (3.64)







The last two, above, with an expanded scale, show that even with a Q of 
158 the maximum amplitude is not yet at the natural frequency.  Note also, 
the difference in their amplitudes.

Notice:  As the mass increases, the maximum response approaches, 
asymptotically, the natural (undamped) frequency, and the maximum 
amplitude to 10 .   This amplitude is found by substituting the amplitude 
resonance frequency4:
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   for the amplitude at resonance.

Horologically, this is of interest only to confirm the well known fact that 
increasing the bobʼs mass does not measurable change the amplitude, 
because no “decent” clock has a pendulumʼs Q less than several hundred.  
That the usual clockʼs pendulum is impulse driven is, I think, irrelevant, 
because such pendulum driven behavior is quite similar, as found using 
Laplace or delta function methods5.  All the above also applies to RCL 
electrical oscillators, as its equation has the same form with the 
substitutions:  q (charge) = x (displacement),  dq

dt
 (current) = dx

dt
 (speed),  L = 

mass, 1/C = spring constant (stiffness), R = damping coefficient (b), and 
drive force emf V0 cos(ωt)= F0 cos(ωt) .  It is understood that for the 
pendulum the small angle regime applies, k/m is replaced by g/L, and the 
dissipation is linear.  However, many clock pendulaʼs in their trajectory 
include a quadratic regime.  I suspect that the above is approximately true 

4 op. cit. p. 120 equation (3.63)
5 Baker and Blackburn, The Pendulum, pp. 37 ff.  Greenʼs method:  Thornton | Marion section 3.9



for that regime, as the linear A = c1 exp− c2t  and quadratic dissipations  

A = c3
1+ c4t

 amplitudes, are rather similar, as the graph below shows.  
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