
Mr. Heldman’s Apparatus, Quantitatively 
 
In a previous Horological Science Newsletter, [2007-5], I reported my intention to purchase the 
apparatus necessary to roughly duplicate Mr. Heldman’s new experiment1,  [2007- 4].  I have 
purchased the necessary apparatus2, and conducted a number of experiments.  I’ll discuss only those 
that relate to pendulum damping due to support compliance, resonance, and a Coulomb friction 
caused flip-flopping or “jerking”. 

Apparatus Description: 
 

The apparatus, not as rugged as Mr. Heldman’s, is pictured (Figs. 1, 2, and 3.) below in a resonance 
configuration.  The total cart mass is ~ 4.9 kg, and the spring constant 200 N/m.  This results in the 
isolated natural period of ~ 0.98 s.  The resonating pendulum (pictured Fig. 3.) has a bob mass of 
0.15 kg.  I was limited to this maximum, 
as the pendulum accessory included only 
two, set screwed brass, cylinders of 0.075 
kg.  Both degrees of freedom are rather 
accurately measured by Rotary Motion 
Sensors (optical encoders).  The left RMS 
measures the cart’s position, and is 
calibrated in mm (resolution ~ 0.1 mm), 
while the right, as the pendulum’s 
suspension, is in radian, (resolution ~ five 
milliradian).  The right cart (Fig. 2.) has 
attached, by two integral magnets, the 
adjustable Coulomb friction pad, 
unfortunately obscured by the pulley 
bracket.  The two carts are locked 
together by two pair of mutually 
attracting magnets.  The Q of the 
pendulum, with the PasCar on wood 
blocks, varies as a function of the amplitude  
similarly to that of a Synchronome.  (See Fig. 4.)     Fig. 1.  (Left)  
I think the Q is initially low due to nonlinear  
(atmospheric) drag.  With decreasing amplitude, the Q increases as the drag approaches linearity.  
The relatively constant region is characteristic of linear damping.  The Q then decreases due to the 
increasing dominance of support, and Coulomb friction dissipation (constant).  The initial curious 
oscillating pattern is due to support3 oscillation normal to the pendulum’s plane.  Mr. Munford’s 
Synchronome also exhibited this behavior.  A very short, five cm, rod pendulum did not obviously 
exhibit this behavior.  I calculated the Q every cycle and did not box average.  See the article in 
HSN 2007-4 for my method.  The rod length was approximately 0.32 m.  Similar behavior was 
evident with the resonating rod length of approximately 0.23 m.  

                                                
1 He informed me that he wouldn’t be able to continue his experimentation for some time, so I have 
thought myself free to continue where he “left off”. 
2 Vernier Dynamics System [track, low friction cart, masses, plus an adjustable cart friction pad], 
and two rotary motion sensors.  From Pasco: pendulum and linear motion accessories.  I already had 
the LoggerPro interface. 
3 The attachment of the RMS to the cart is far from ideal.  I milled the plastic edge (Dremel tool) to 
accommodate the mount and welded it with PVC pipe solvent.  Furthermore, the cart’s wheels have 
considerable lash. 



 
 

Fig. 2.  (Right) 
    
Because the apparatus is rather crude, I found it 
necessary to use, for those accustomed to clock 
pendula, extreme initial amplitudes.  Therefore, I 
include a graph of Pendulum Q as a function of the 
amplitude, so they won't be misled.  Vide Fig. 5.  Its 
data is from the same trial as in fig. 4.  A discussion of 
the cart’s Q completes the apparatus description.  Its Q 
is just sufficient to explore the effect of a damped 
oscillating support, and, with sufficient added friction 
a flip-flop behavior.  As stated above, I obtained from 
Vernier an adjustable friction pad that adds 
approximately constant coulomb dissipation.  The next 
figure (Fig. 6.) is a graph of the cart and pendulum 
support freely decaying as a spring oscillator with the 
pad screwed up from the track, i.e. it is not driven, as 
the pendulum rod was removed.  Note that the 
maximum Q is approximately 80, and the cart system’s 
position is measured in millimeters.  The initial 
amplitude is the maximum possible, the right spring 
being just unstreatched.  The PasCar only, with the 
RMS, has a somewhat higher Q, and the addition of 
the thread driven RMS as a linear position sensor 
reduces the Q by approximately ten percent.  
Unfortunately, they are both necessary for data 
collection and the addition of damping.  Without the 
photogate, the highest time resolution of the RMS, 
using the Vernier LabPro computer interface, is ten 
milliseconds, quite adequate for the experimental parameters  
used.  However, with the photogate it’s limited to      Fig. 3. 
100 milliseconds.  This limitation is obvious in figure six.   



 
 
        Fig. 4.4          Fig. 5. 
 

 
       Fig. 6. 
 
The following figure (seven) illustrates the energy transfer from one coupled oscillator to another when 
their natural frequencies are approximately the same.  The oscillations were initiated by displacing the 
pendulum approximately 1.3 radians (75 deg.).  The data with respect to energy is internally consistent, 
i.e. the potential energy of the pendulum is approximately the same as the spring’s at their maximum 
displacements (~ 0.24, and 0.19 Joule, respectively).  The difference is easily explained by the cart’s 
dissipation during the two plus cycles necessary for the complete transfer.  Note that nearly all the 
initial pendulum’s energy is dissipated in approximately 25 cycles, and the dissipation rate decreases 
with amplitude.  You will note that after about 36 seconds the pendulum decay is much reduced, 
because the cart is now semi-locked by its static friction.  “Semi” because of a system lash revealed by 
expanding the cart’s position ordinate.  This continues for some time and is about 0.1 mm.  Notice, 
also, that, though the cart and pendulum’s total initial energy is one fourth that of the cart in Fig. 6, the 
decay times (number of cycles) are approximately the same for an obvious reason.  As is obvious from 
the graph, I manually displaced the pendulum not using the time honored match and thread method.  In 
addition, I didn’t restrain the cart while displacing the pendulum. 

                                                
4 Data for figs. 4 and 5 were collected using the MicroSet (Mumford Micro Systems) and its 
included standard optical sensor.  The dominant source of jitter evident in all the graphs is likely 
due to the crudeness of the apparatus, and the external environment (draughts, etc.)  The 
Kaleidograph application was used for the analysis and some of the graphs.  Fig. 6 and some of the 
following graphs were generated by Logger Pro, Vernier’s analysis application bundled with the 
LabPro computer interface.   



 
 
 [Upper curve, right axis]             Fig. 7. 
 
The next figure illustrates the incomplete transfer of energy when the natural frequencies differ 
significantly.  Fig. 7’s periods are ~ 0.98 s., while fig. 8’s pendulum is ~ 1.5 s.  Though the initial 
pendulum displacement, is  ~ 70% that of Fig. 7’s (0.9/1.3), the initial energy is about twice 
(0.3/0.17), because the rod’s length is about double (~ 0.55 m), limited by the height of the coffee 
table).  Therefore, despite the greater pendulum energy, significantly less is transferred.  Note the 
initial rapid decay of the cart’s natural frequency (~ 0.98 s.).  However, a beat modulation of the cart 
driven at the pendulum’s period (~ 1.5 s.) is still noticeable after a minute.  This behaviour is similar 
to that of my numerical model.  [Fig. 4, HSN, 2007-5. p. 34] except, of course, it continues 
indefinitely as I didn’t include a damping term in the spring oscillator’s differential equation.  
However, my Fig. 7 (op.cit.) shows this behavior for a damped spring oscillator driven out of 
resonance.  Because the pendulum has a very high high Q compared to the cart’s, it acts as a quasi-
sinusoidal drive of the spring oscillator cart, hence the similar behavior.   
 

  
 

    Fig. 8. 



 
 

Fig. 9. 
 

I have included a graph of the end of this coupled oscillator’s decay (Fig. 9.) to reinforce the familiar 
fact that when the suspension becomes semi-locked the pendulum’s Q increases significantly.  This is 
evident in Figs. 7, 13, and 15, also. 
 
Finally, we examine the effect of much increased cart damping.   
 

 
   Fig. 10       Fig. 11.  
 
Figure 10, above, shows the effect of increasing the damping to what, if the damping were linear, 
would be termed approximately critical.  With linear damping, for all initial displacements, the 
oscillator decays to zero displacement just without overshoot (oscillation).  In the case of constant 
damping, the behaviour will, with a small displacement, act as if over damped, and with a large 
displacement, will oscillate.  The damping in the above case was approximately “critical” for that 
trial’s initial displacement.  Figure 11 shows this almost critical cart damping.  With decay, 
damping becomes “over critical”.  Figure 12 is the complete trial shown in figure 10.  Notice: in 
figure 10 both the phase relation of the pendulum, as it drives the cart, and the cart’s hesitation 
(nearly flip flopping) due to friction.  With increased friction, figure 13, the oscillator “flip flops”.  
This oscillator is initially “over damped. 
 



 
[Upper curve, pendulum]  Fig. 12.       Fig. 13. 
Figure 14 shows the corresponding over damping of the spring oscillator, and figure 15 the 
complete trial.  Note the interesting shape of the envelope (maximum amplitudes) of the two 
heavily damped spring oscillators’ curves.  Initially it is linear (straight) and then curves 
(approximately exponential).  This is most evident in figure 12, nearly absent in 15.  I think this is 
due to the dominant constant dissipation (Coulomb damping).  At about 25 seconds (figure 12) the 
proportional absorption of the pendulum’s energy becomes much less, because the dissipation duty 
cycle is low, i.e. the cart spends a longer proportional time “locked”.  Therefore, the pendulum acts 
as a more nearly constant sinusoidal drive.  With the cart mostly locked, the dominant dissipation is 
linear and the system exhibits exponential decay. 

    
   Fig. 14.     Fig. 15. 
I have found, numerically and on a gross scale experimentally, the behaviour of a non-rigidly 
supported pendulum.  In particular, if there is resonance, the pendulum will exhibit a “beat” 
behaviour.  The beat intensity is a strong function of the difference between the oscillators’ periods.  
Resonance or not, the pendulum Q depends on the damping or rigidity of the support.  The latter, of 
course, is quite familiar.  Finally, because the springs in Mr. Heldman’s photo [HSN 2007 – 4, p. 
22] appear nearly fully stretched, I suspect the oscillators flip-flopping is due to their resulting 
hardness.  I hope to duplicate this for my next article.  I also hope to examine support rigidity and 
pendulum period.  bernardcleyet@redshift.com 


