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Abstract

A cantilever is a beam that is fixed at one end and free to oscillate on the other end, and its motion is described by a
fourth-order partial differential equation (i.e. a fourth-order wave equation). In this experiment, a cantilever was set up
using a long, flat metal beam, and its motion was captured at 600 fps using high-speed video. The video was analyzed to
determine how the frequency of oscillation of the free end of the beam depends on the length of the beam. Results
showed that for the case where the beam was pulled down on one end and released from rest, the motion of the free end
of the beam was sinusoidal. It was found that the frequency of oscillation was proportional to the inverse of the square of
the length of the beam, as predicted by the solution to the wave equation for the beam. Using the curve fit, the rigidity of
the beam was found to be K=0.0151 \newton · \meter2.

Introduction
A cantilever is a beam with one fixed end and one free end as shown in Figure cantileverbeam. The vertical displacement
u(x,t) of a point at location x on the beam oscillates and is described mathematically by the differential equation in Eq.
(waveequation),

{∂2 u}/{∂ t2} = α2 {∂4 u}/{∂ x4}

where α2=K/ρ, K is the rigidity of the beam in \newton · \meter2, and ρ is the linear density of the beam in \kilogram
\per \meter. (Solutions of this differential equation for various boundary conditions are discussed by Wylie [Wylie] and
Farlow [Farlow] .) This differential equation is called a wave equation for the beam, and it is easier to express the partial
derivatives in the wave equation using the notation in Eq. (waveeqshortcut).

utt = α2 uxxxx

By separating the variables x and t, the solution u(x,t) is written as a product of a function of x and a function of t, as
shown in Eq. (sepOfVars).

u(x,t) = X(x)T(t)

The general solutions for each function are:

T(t) = Asin(ωn t) + Bcos(ωn t)

X(x) = Ccos(βn x) + Dsin(βn x) + Ecosh(βn x) + Fsinh(βn x)
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where ωn are the natural frequencies of the beam, and βn, A, B, C, D, E, and F are constants that must be determined
from the boundary conditions (at x=0 and x=L) and the initial conditions (at t=0).

For a beam fixed on one end (at the left) and free to oscillate on the other end (at the right), the boundary conditions are:

at left end        u(0,t) = 0        left end is fixed at u=0
at left end        ux(0,t) = 0        beam is horizontal at left end
at right end        uxx(L,t) = 0        bending moment is zero
at right end        uxxx(0,t) = 0        shear stress is zero

The initial conditions refer to the position and velocity of each point x on the beam at t=0. These will be functions that
depend on how the beam is initially released. For example, the simplest case is if the free end of the beam is pulled
downward and released from rest. In any case,

initial vertical displacement        u(x,0) = f(x)
initial vertical velocity        ut(x,0) = g(x)

where f(x) is determined by the shape of the beam at t=0, and g(x) is determined by the velocity profile of the beam at
t=0. The beam may be released from rest; however, it is also possible to hit one part of the beam, like the hammer in a
piano striking a string, so that g(x)≠0.

By substituting the solution u(x,t)=X(x)T(t) into the wave equation in Eq. (waveeqshortcut), the following quantities can
be determined.

1. Natural frequencies: The natural frequencies are:

ωn = √{{K}/{ρ L4}}(βnL)2

where the constants (βnL) are the intersections of the curves in the graph in Figure coscoshplot. The first three
values are βnL=1.875 rad, 4.694 rad, and 7.855 rad, and subsequent values are for cos(βnL)=0. Note that ωn ∝
{1}/{L2}. Thus, a shorter cantilever will oscillate with a higher frequency. If the cantilever is twice as short, its
frequency will be 4 times greater.

2. Coefficients and frequencies for various modes: The formal solution u(x,t) is

u(x,t)=∑n=1∞X(x)(Acosωnt+Bsinωnt)

where the constants A and B are determined from the initial conditions.

For the initial vertical displacement,

u(x,0)=f(x)=∑n=1∞AnX(x)

For the initial velocity,

{∂ u}/{∂ t}(x,0)=g(x)=∑n=1∞(ωnBn)X(x)

From the shape of the cantilever at t=0, f(x) can be determined by a curve fit. By measuring the initial velocity of
various points on the cantilever, g(x) can be determined by a curve fit. With these known, a Fourier transform can
be used to determine the coefficients An and Bn for the natural frequencies ωn. Thus, the Fourier transform tells us
which eigenfunctions make up the solution for the given initial conditions.



In this experiment, the free end of the cantilever was released from rest, and it oscillated sinusoidally. High-speed video
was used to measure the vertical position of the free end as a function of time. The angular frequency of oscillation was
measured by a fitting a sinusoidal function to the graph of vertical position vs. time. The angular frequency was measured
as a function of amplitude and as function of the length of the bar.

Apparatus
The apparatus is shown in Figure bar with the bar flexed and ready to be released. The cantilever was a long, rectangular
aluminum bar that was 0.002 m tall, 0.914 meters long and 0.048m wide. Yellow stickers were placed at 10 cm
increments on the bar. The right-side of the bar was clamped to a table so that it was fixed. A meterstick with yellow
stickers placed 10 cm apart was placed close to the plane of the bar and was used for distance calibration in the video.

Experiment: Frequency as a function of amplitude
It is well known that the frequency of a simple harmonic oscillator is independent of the amplitude of oscillation.
However, it was not clear if this was the case for the oscillating cantilever beam (free end). To determine whether it was
important to control the amplitude of oscillation in the experiment, it was first determined whether amplitude affected the
frequency of oscillation.

The bar was clamped at a location so that its length was 50 cm. The free end of the cantilever was pushed downward and
released from rest as shown in Figure bar. The vertical position y of the free end of the cantilever was measured as a
function of time t for numerous oscillations. The result is shown in Figure y-t-graph along with the a sinusoidal curve fit
of the form y=Asin(Bt+C)+D. Comparing this with the sinusoidal function y=Asin(ω t+ϕ) shows that the amplitude is the
coefficient A and the angular frequency is the coefficient B from the curve fit.

Four different trials were conducted, each with a different amplitude, and the results are shown in Table amplitude-
frequency. The average frequency is 3.034 rad/s with a standard deviation of 0.009 rad/s. That’s a percent deviation of
only 0.003% from the mean. Considering that the amplitude was changed by a factor of two, the variation in the angular
frequency is statistically insignificant. It is safe to conclude that the amplitude does not affect the angular frequency;
therefore, the amplitude does not have to be controlled when measuring the angular frequency of the bar.

Experiment: Frequency as a function of the length of the bar

According to Eq. (omegan), the angular frequency of the bar should be proportional to 1/L2 of the bar, since (βnL) are
constants for different modes of oscillation. To test this, the angular frequency of the free end of the bar was measured for
various lengths of the bar: 40 cm, 50 cm, 60 cm, and 70 cm. The amplitude was kept approximately the same, though this
was not necessary since amplitude does not affect angular frequency.

For each length, the experiment was repeated for a total of three trials, and the average angular frequency and standard
deviation of the angular frequency were measured. The standard deviation of the angular frequency was used to determine
the uncertainty in the measurement of the angular frequency. As shown in Figure y-t-graph, the angular frequency for
each trial was measured using a sinusoidal curve fit of y(t) for the free end of the cantilever.

The results are shown in Table length-frequency. Note that the standard deviation is remarkably small, showing that high-
speed video analysis in this case is a precise and excellent technique for measuring the frequency of oscillation. The
relative error in the worst case is only 0.2%

A graph of ωave as a function of L is shown in Figure omega-graph. The error bars are too small to be seen on the graph.
The function ω=A/L2 was fit to the data, and the best-fit curve was found to be ω=(0.755 \meter2 \per \second)/L2.

It was not established that the free end of the beam oscillates in the fundamental mode (n=1). However, assuming that
n=1, then β1L=1.875 and the curve fit parameter is A=√{{K}/{ρ}}(1.875)2=0.755 \meter2 \per \second. Solving for the



rigidity constant for this particular aluminum bar (linear density ρ=0.327 \kilogram\per\meter) gives K=0.0151 \newton·
\meter2.

Conclusion
This experiment investigated the motion of the free end of an oscillating cantilever beam that was displaced on the free
end and released from rest. High-speed video analysis was used to measure the amplitude and angular frequency of the
free end of the beam. It was found that the angular frequency is independent of the amplitude, which is similar to that of a
simple harmonic oscillator. In addition, the angular frequency was found to depend on 1/L2 where L is the length of the
beam; thus, shorter beams oscillate with a higher frequency, exactly as predicted by the solution of the wave equation.
The curve fit constant for the graph of ω as a function of L was used to measure the rigidity of the beam, though it was
not proven that the measured oscillation was the fundamental mode with n=1.

In future experiments, it should be possible to show that the measured oscillation is the fundamental (n=1). In addition,
the initial conditions could be changed by hammering the center of the beam, for example. In this case, it might be
possible to get a superposition of modes. The resulting graph of y(t) would be periodic, but not necessarily sinusoidal.
Using Fourier Analysis and Equations (fourier1)and (fourier2), the various modes could be determined.
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Tables

Amplitude, A (cm) Angular Frequency, ω (rad/s)
5.826 3.025
7.117 3.030
9.397 3.036
10.980 3.046

Angular frequency for various amplitudes.

Length, L (m) ωave (rad/s) Standard Deviation, σ (rad/s)
0.40 4.705 .00849
0.50 3.024 .00153
0.60 2.107 .00173
0.70 1.555 .00173

Angular frequency for various lengths of the cantiliever.

Figures

The cantilever and coordinate system.

Graphs of cos(βnL) and {-1}/{cosh(βnL)}.



A cantilever made of an aluminum bar fixed at one end.

y(t) for the free end of the cantilever

ωave vs. L
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\begin{abstract}
A cantilever is a beam that is fixed at one end and free to oscillate on the 
other end, and its motion is described by a fourth-order partial differential 
equation (i.e. a fourth-order wave equation). In this experiment, a cantilever 
was set up using a long, flat metal beam, and its motion was captured at 600 
fps using high-speed video. The video was analyzed to determine how the 
frequency of oscillation of the free end of the beam depends on the length of 
the beam. Results showed that for the case where the beam was pulled down on 
one end and released from rest, the motion of the free end of the beam was 
sinusoidal. It was found that the frequency of oscillation was proportional to 
the inverse of the square of the length of the beam, as predicted by the 
solution to the wave equation for the beam. Using the curve fit, the rigidity 
of the beam was found to be $K=0.0151\ \newton \cdot \meter^2$.
\end{abstract}

\maketitle

\section{Introduction}

A cantilever is a beam with one fixed end and one free end as shown in Figure 
\ref{cantileverbeam}.  The vertical displacement $u(x,t)$ of a point at 
location $x$ on the beam oscillates and is described mathematically by the 



differential equation in Eq. (\ref{waveequation}),

\begin{eqnarray}
 \frac{\partial^2 u}{\partial t^2}& = & \alpha^2 \frac{\partial^4 
u}{\partial x^4} 
 \label{waveequation}
\end{eqnarray}

where $\alpha^2=K/\rho$, $K$ is the rigidity of the beam in $\newton \cdot 
\meter^2$, and $\rho$ is the linear density of the beam in $\kilogram \per 
\meter$. (Solutions of this differential equation for various boundary 
conditions are discussed by Wylie \cite{Wylie} and Farlow\cite{Farlow}.) This 
differential equation is called a wave equation for the beam, and it is easier 
to express the partial derivatives in the wave equation using the notation in 
Eq. (\ref{waveeqshortcut}).

\begin{eqnarray}
 u_{tt}& = &\alpha^2 u_{xxxx}
 \label{waveeqshortcut}
\end{eqnarray}

By separating the variables $x$ and $t$, the solution $u(x,t)$ is written as a 
product of a function of $x$ and a function of $t$, as shown in Eq. 
(\ref{sepOfVars}).

 \begin{eqnarray}
 u(x,t)& = &X(x)T(t)
 \label{sepOfVars}
\end{eqnarray}

The general solutions for each function are:

 \begin{eqnarray}
 T(t) & = & A\sin(\omega_n t) + B\cos(\omega_n t) \\
 X(x) & = & C\cos(\beta_n x) + D\sin(\beta_n x) + E\cosh(\beta_n x) + 
F\sinh(\beta_n x)
\end{eqnarray}

where $\omega_n$ are the natural frequencies of the beam, and $\beta_n$, $A$, 
$B$, $C$, $D$, $E$, and $F$ are constants that must be determined from the 
boundary conditions (at $x=0$ and $x=L$) and the initial conditions (at 
$t=0$). 

For a beam fixed on one end (at the left) and free to oscillate on the other 
end (at the right), the boundary conditions are:

\begin{eqnarray}
 \mbox{at left end} \qquad u(0,t) & = & 0 \qquad \mbox{left end is 
fixed at $u=0$} \\
 \mbox{at left end} \qquad u_x(0,t) & = & 0 \qquad \mbox{beam is 
horizontal at left end} \\
 \mbox{at right end} \qquad u_{xx}(L,t) & = & 0 \qquad \mbox{bending 
moment is zero} \\
 \mbox{at right end} \qquad u_{xxx}(0,t) & = & 0 \qquad \mbox{shear 
stress is zero} 
\end{eqnarray}



The initial conditions refer to the position and velocity of each point $x$ on 
the beam at $t=0$. These will be functions that depend on how the beam is 
initially released. For example, the simplest case is if the free end of the 
beam is pulled downward and released from rest. In any case,

\begin{eqnarray}
 \mbox{initial vertical displacement} \qquad u(x,0) & = & f(x)  \\
 \mbox{initial vertical velocity} \qquad u_t(x,0) & = & g(x)  \\
\end{eqnarray}

where $f(x)$ is determined by the shape of the beam at $t=0$, and $g(x)$ is 
determined by the velocity profile of the beam at $t=0$. The beam may be 
released from rest; however, it is also possible to hit one part of the beam, 
like the hammer in a piano striking a string, so that $g(x)\ne0$.

By substituting the solution $u(x,t)=X(x)T(t)$ into the wave equation in Eq. 
(\ref{waveeqshortcut}), the following quantities can be determined.

\begin{description}

\item [1.  Natural frequencies:] The natural frequencies are:

\begin{eqnarray}
 \omega_n & = & \sqrt{\frac{K}{\rho L^4}}(\beta_nL)^2 
 \label{omegan}
\end{eqnarray}

where the constants $(\beta_nL)$ are the intersections of the curves in the 
graph in Figure \ref{coscoshplot}. The first three values are $\beta_nL=1.875$ 
rad, 4.694 rad, and 7.855 rad, and subsequent values are for 
$\cos(\beta_nL)=0$. Note that $\omega_{n} \propto \frac{1}{L^2}$. Thus, a 
shorter cantilever will oscillate with a higher frequency. If the cantilever 
is twice as short, its frequency will be 4 times greater.

\item [2. Coefficients and frequencies for various modes: ] The formal 
solution $u(x,t)$ is

\begin{equation}
  u(x,t)={\sum_{n=1}^{\infty}}X(x)(Acos{\omega_n}t+Bsin{\omega_n}t)
\end{equation}

where the constants $A$ and $B$ are determined from the initial conditions.

For the initial vertical displacement,
\begin{equation}
 u(x,0)=f(x)={\sum_{n=1}^{\infty}}A_nX(x)
 \label{fourier1}
\end{equation}
For the initial velocity,
\begin{equation}
 \frac{\partial u}{\partial 
t}(x,0)=g(x)={\sum_{n=1}^{\infty}}({\omega_n}B_n)X(x)
 \label{fourier2}
\end{equation}

From the shape of the cantilever at $t=0$, $f(x)$ can be determined by a curve 



fit. By measuring the initial velocity of various points on the cantilever, 
$g(x)$ can be determined by a curve fit. With these known, a Fourier transform 
can be used to determine the coefficients $A_n$ and $B_n$ for the natural 
frequencies $\omega_n$. Thus, the Fourier transform tells us which 
eigenfunctions make up the solution for the given initial conditions. 
\end{description}

In this experiment, the free end of the cantilever was released from rest, and 
it oscillated sinusoidally. High-speed video was used to measure the vertical 
position of the free end as a function of time. The angular frequency of 
oscillation was measured by a fitting a sinusoidal function to the graph of 
vertical position vs. time. The angular frequency was measured as a function 
of amplitude and as function of the length of the bar.

\section{Apparatus}

The apparatus is shown in Figure \ref{bar} with the bar flexed and ready to be 
released. The cantilever was a long, rectangular aluminum bar that was 0.002 m 
tall, 0.914 meters long and 0.048m wide. Yellow stickers were placed at 10 cm 
increments on the bar. The right-side of the bar was clamped to a table so 
that it was fixed. A meterstick with yellow stickers placed 10 cm apart was 
placed close to the plane of the bar and was used for distance calibration in 
the video.

\section{Experiment:  Frequency as a function of amplitude}

It is well known that the frequency of a simple harmonic oscillator is 
independent of the amplitude of oscillation. However, it was not clear if this 
was the case for the oscillating cantilever beam (free end). To determine 
whether it was important to control the amplitude of oscillation in the 
experiment, it was first determined whether amplitude affected the frequency 
of oscillation.

The bar was clamped at a location so that its length was 50 cm. The free end 
of the cantilever was pushed downward and released from rest as shown in 
Figure \ref{bar}. The vertical position $y$ of the free end of the cantilever 
was measured as a function of time $t$ for numerous oscillations. The result 
is shown in Figure \ref{y-t-graph} along with the a sinusoidal curve fit of 
the form $y=Asin(Bt+C)+D$. Comparing this with the sinusoidal function 
$y=Asin(\omega t+\phi)$ shows that the amplitude is the coefficient $A$ and 
the angular frequency is the coefficient $B$ from the curve fit.

Four different trials were conducted, each with a different amplitude, and the 
results are shown in Table \ref{amplitude-frequency}. The average frequency is 
3.034 rad/s with a standard deviation of 0.009 rad/s. That's a percent 
deviation of only 0.003\% from the mean. Considering that the amplitude was 
changed by a factor of two, the variation in the angular frequency is 
statistically insignificant. It is safe to conclude that the amplitude does 
not affect the angular frequency; therefore, the amplitude does not have to be 
controlled when measuring the angular frequency of the bar.

\section{Experiment:  Frequency as a function of the length of the bar}

According to Eq. (\ref{omegan}), the angular frequency of the bar should be 
proportional to $1/L^2$ of the bar, since $(\beta_nL)$ are constants for 
different modes of oscillation. To test this, the angular frequency of the 
free end of the bar was measured for various lengths of the bar:  40 cm, 50 



cm, 60 cm, and 70 cm. The amplitude was kept approximately the same, though 
this was not necessary since amplitude does not affect angular frequency.

For each length, the experiment was repeated for a total of three trials, and 
the average angular frequency and standard deviation of the angular frequency 
were measured. The standard deviation of the angular frequency was used to 
determine the uncertainty in the measurement of the angular frequency. As 
shown in Figure \ref{y-t-graph}, the angular frequency for each trial was 
measured using a sinusoidal curve fit of $y(t)$ for the free end of the 
cantilever.

The results are shown in Table \ref{length-frequency}. Note that the standard 
deviation is remarkably small, showing that high-speed video analysis in this 
case is a precise and excellent technique for measuring the frequency of 
oscillation. The relative error in the worst case is only 0.2\%

A graph of $\omega_{ave}$ as a function of $L$ is shown in Figure \ref{omega-
graph}. The error bars are too small to be seen on the graph. The function 
$\omega=A/L^2$ was fit to the data, and the best-fit curve was found to be 
$\omega=(0.755\ \meter^2 \per \second)/L^2$.

It was not established that the free end of the beam oscillates in the 
fundamental mode ($n=1$). However, assuming that $n=1$, then $\beta_1L=1.875$ 
and the curve fit parameter is $A=\sqrt{\frac{K}{\rho}}(1.875)^2=0.755\ 
\meter^2 \per \second$. Solving for the rigidity constant for this particular 
aluminum bar (linear density ${\rho}=0.327\ \kilogram\per\meter$) gives 
$K=0.0151\ \newton\cdot\meter^2$.

\section{Conclusion}

This experiment investigated the motion of the free end of an oscillating 
cantilever beam that was displaced on the free end and released from rest. 
High-speed video analysis was used to measure the amplitude and angular 
frequency of the free end of the beam. It was found that the angular frequency 
is independent of the amplitude, which is similar to that of a simple harmonic 
oscillator. In addition, the angular frequency was found to depend on $1/L^2$ 
where $L$ is the length of the beam; thus, shorter beams oscillate with a 
higher frequency, exactly as predicted by the solution of the wave equation. 
The curve fit constant for the graph of $\omega$ as a function of $L$ was used 
to measure the rigidity of the beam, though it was not proven that the 
measured oscillation was the fundamental mode with $n=1$.

In future experiments, it should be possible to show that the measured 
oscillation is the fundamental ($n=1$). In addition, the initial conditions 
could be changed by hammering the center of the beam, for example. In this 
case, it might be possible to get a superposition of modes. The resulting 
graph of $y(t)$ would be periodic, but not necessarily sinusoidal. Using 
Fourier Analysis and Equations (\ref{fourier1})and (\ref{fourier2}), the 
various modes could be determined.
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\section*{Tables}

\begin{table}[htdp]
\begin{center}
\begin{tabular}{|c|c|}
 \hline
Amplitude, A (cm) & Angular Frequency, $\omega$ (rad/s)\\
 \hline
5.826 & 3.025\\
7.117 & 3.030\\
9.397 & 3.036\\
10.980 & 3.046\\
 \hline
\end{tabular}
\end{center}
\caption{Angular frequency for various amplitudes.}
\label{amplitude-frequency}
\end{table}%

\begin{table}[htdp]
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|}
 \hline
Length, L (m) & ${\omega_{ave}}$ (rad/s) & Standard Deviation, $\sigma$ 
(rad/s) \\
 \hline
0.40 & 4.705 & .00849\\
0.50 & 3.024 & .00153\\
0.60 & 2.107 & .00173\\
0.70 & 1.555 & .00173\\
 \hline
\end{tabular}
\end{center}
\caption{Angular frequency for various lengths of the cantiliever.}
\label{length-frequency}
\end{table}%
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\section*{Figures}

\begin{figure}[h]
\begin{center}
 \includegraphics[scale=1.2]{cantileverbeam}\\
 \caption{The cantilever and coordinate system.}



 \label{cantileverbeam}
\end{center}
\end{figure}

\begin{figure}[h]
\begin{center}
 \includegraphics[scale=0.5]{coscoshplot}\\
 \caption{Graphs of $\cos(\beta_nL)$ and $\frac{-1}{\cosh(\beta_nL)}$.}
 \label{coscoshplot}
\end{center}
\end{figure}

\begin{figure}[h]
\begin{center}
 \includegraphics[scale=0.4]{bar}\\
 \caption{A cantilever made of an aluminum bar fixed at one end.}
 \label{bar}
\end{center}
\end{figure}

\begin{figure}[htbp]
\begin{center}
 \includegraphics[scale=0.5]{y-t-graph.jpg}
 \caption{$y(t)$ for the free end of the cantilever}
 \label{y-t-graph}
\end{center}
\end{figure}

\begin{figure}[htbp]
\begin{center}
 \includegraphics[scale=0.5]{omega-graph}\\
 \caption{$\omega_{ave}$ vs. $L$}
 \label{omega-graph}
\end{center}
\end{figure}
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