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a b s t r a c t

A mathematical model describing the process of large amplitude vibration of a uniform
cantilever beam arising in the structural engineering is proposed. Six different analytical
methods are applied to solve the dynamic model of the large amplitude non-linear
oscillation equation. Periodic solutions are analytically verified, and consequently the
relationship between the natural frequency and the initial amplitude is obtained in an
analytical form. Comparison of the present solutions is made with the exact solution and
excellent agreement is noted.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Structural engineering theory is based upon physical laws and empirical knowledge of the structural performance of
different landscapes and materials. Many engineering structures can be modelled as a slender, flexible cantilever beam
carrying a lumped mass with rotary inertia at an intermediate point along its span; hence they experience large-amplitude
vibration [1–5]. In general, such problems are not amenable to exact treatment because of their complexity, and approximate
techniques must be resorted to [1–5]. Amongst these, the perturbation methods [6–8] are in common use. Perturbation
methods are based on the existence of small parameters, the so-called perturbation quantity.

Recently, considerable attention has been paid towards approximate solutions for analytically solving the nonlinear
differential equation. Many nonlinear problems do not contain such a perturbation quantity. So, in order to overcome
the shortcomings, many new techniques have appeared in the open literature such as: variational iteration method
[9–13], energy balancemethod [14–20], Hamiltonian approach [21–25], coupled homotopy-variational formulation [26,27],
variational approach [28–30], amplitude–frequency formulation [31,32] and other classical methods [33–50].

In this paper, the basic idea of variational approach, energy balancemethod,Hamiltonian approach, amplitude–frequency
formulation and coupled homotopy-variational formulation is introduced and then their applications are studied for the
following model of nonlinear oscillations in the engineering structure problems [1]:

d2u
dt2

+ u + αu2 d
2u

dt2
+ αu


du
dt

2

+ βu3
= 0 (1)

u(0) = A,
du
dt

(0) = 0. (2)
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In order to analytically solve this problem, we introduce a new independent variable

τ = Ωt. (3)

Substituting Eq. (3) into Eqs. (1) and (2), we get

u′′
+ u + αu2u′′

+ αuu′2
+ βu3

= 0 (4)

with initial conditions:

u(0) = A, u′(0) = 0. (5)

The third and fourth terms in Eq. (4) represent inertia-type cubic non-linearity arising from the inextensibility assumption.
The last term is a static-type cubic non-linearity associatedwith the potential energy stored in bending. Themodal constants
α and β result from the discretization procedure and they have specific values for each mode as described in [1].

2. The application of the variational approach (VA)

The variational approach for nonlinear oscillators was proposed in 2007 [28]. Consider the nonlinear oscillator equation
(4). Its variational principle can be obtained by using the semi-inverse method [28]:

J(u) =

∫ T
4

0


−

1
2
u′2

+
1
2
u2

−
1
2
αu2u′2

+
1
4
βu4


dt (6)

where T is the period of the oscillator f =
∂F
∂u . Assume that its approximate solution can be expressed as:

u(t) = A cos(ωt). (7)

In Eq. (7), ω is the frequency to be determined and A is the amplitude of oscillation. Inserting Eq. (7) into Eq. (6) yields:

J =
A2π

ω


−

1
8
ω2

−
1
32

αA2ω2
+

3
64

βA2
+

1
8


. (8)

Using the Ritz method, we obtain:

∂ J
∂ω

= 0,
∂ J
∂A

= 0. (9)

In Ref. [28], He gave a very lucid as well as elementary discussion of the invalidity of the Ritz method. In particular, He used
an unheard-of simple procedure to arrive at a surprisingly accurate prediction for the relationship between the frequency
and amplitude of a nonlinear oscillator. According to Ref. [28], to identify ω one requires

∂ J
∂A

= 0, (10)

from which the relationship between the amplitude and frequency of the oscillator can be easily obtained:

ωVA =


3βA2 + 4


2αA2 + 4

 . (11)

3. The application of the energy balance method (EBM)

In 2002, the energy balance method was proposed by He [18]. In the energy balance method, a variational principle for
the nonlinear oscillation is established, then a Hamiltonian is constructed, fromwhich the angular frequency can be readily
obtained by the collocation method [28].

In the energy balance method, according to its basic idea, if θ = 0, the whole energy is in the form of kinetic energy and
if θ = π/2, the whole energy is in the form of potential energy. In θ = π/4, there is a balance between the potential energy
and kinetic energy [18], from which the angular frequency can be readily obtained by the collocation method. The results
are valid not only for weak nonlinear systems, but also for strong nonlinear ones.

It is easy to establish a variational principle for Eq. (4), which reads:

J(u) =

∫ T
4

0


−

1
2
u′2

+
1
2
u2

−
1
2
αu2u′2

+
1
4
βu4


dt, (12)
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from which its Hamiltonian can be obtained immediately:

H(u) =
1
2
u′2

+
1
2
u2

+
1
2
αu2u′2

+
1
4
βu4. (13)

Or:

1
2
u′2

+
1
2
u2

+
1
2
αu2u′2

+
1
4
βu4

=
1
2
A2

+
1
4
βA4. (14)

The simplest trail function is

u = A cosωt. (15)

Substituting (12) into (11) where ωt = π/4, the following residual equation is obtained:

R =
1
4
A2ω2

+
1
8
αA4ω2

−
1
4
A2

−
3
16

βA4. (16)

The first order approximate solution is obtained, which reads:

ωEBM =


3βA2 + 4


2αA2 + 4

 . (17)

4. The application of the Hamiltonian approach (HA)

Previously, He [18] had introduced the energy balance method based on collocation and Hamiltonian. Recently, in 2010
it was developed into the Hamiltonian approach [21]. This approach is a kind of energy method with a vast application in
conservative oscillatory systems. In order to clarify this approach, the Hamiltonian of Eq. (4) can be written in the form:

H(u) =
1
2
u′2

+
1
2
u2

+
1
2
αu2u′2

+
1
4
βu4. (18)

Eq. (18) implies that the total energy keeps unchanged during the oscillation. According to Eq. (18):

∂H
∂A

= 0. (19)

Introducing a new function, H(u), defined as [16]:

H(u) =

∫ T
4

0

1
2
u′2

+
1
2
u2

+
1
2
αu2u′2

+
1
4
βu4

=
1
4
TH. (20)

It is obvious that:

∂H
∂T

=
1
4
H. (21)

Eq. (21) is equivalent to the following one:

∂

∂A


∂H
∂T


= 0. (22)

Or:

∂

∂A


∂H

∂ (1/ω)


= −

1
8
αA3ω2π − Aω2π


1
2

+
1
8
αA2


+ A3π


3
32

β +
1
16

αω2


+ Aπ


1
4
ω2

+
1
16

αA2ω2
+

3
32

βA2
+

1
4


= 0. (23)

Consequently, the approximate frequency can be found from Eq. (23).

ωHA =


3βA2 + 4


2αA2 + 4

 . (24)
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5. The application of the integral iteration method (IIM)

In 2005, a simple but effective iterationmethodwas proposed to search for limit cycles or bifurcation curves of nonlinear
equations by He [35].

According to the method Eq. (1) can be rewritten in the following iteration form [35]:

un+1 = −un − f (un, u′

n, u
′′

n). (25)

Substituting a trail function into (25) and integrating twice, un+1 can be easily obtained.
Consider the nonlinear oscillator equation (4). For n = 0, the following iteration form is

u′′

1 = −u0 − αu2
0u

′′

0 − αu0u′2
0 − βu3

0. (26)

The simplest trail function is

u0 = A cosωt. (27)

Substituting Eq. (27) into the functional equation (26) and integrating twice yields:

u1 =
A
ω2


−

1
2
αA2ω2

+
3
4
βA2

+ A

cos(ωt) +

A3

ω2


−

1
18

αω2
+ β


cos(3ωt) + Ct + B (28)

C and D are integral constants. The last two terms in (28) do not exhibit periodic behaviour, which is characteristic of
oscillator equations, so the terms can be eliminated in the procedure [35].

By equating the coefficients of cos(ωt) in u0 and u1 the approximate frequency can be obtained:

ωIIM =


3βA2 + 4


2αA2 + 4

 . (29)

6. The application of the amplitude–frequency formulation (AFF)

To solve nonlinear problems, an amplitude–frequency formulation for nonlinear oscillators was proposed by He, which
was deduced using an ancient Chinese mathematics method [33,34]. According to He’s amplitude–frequency formulation,
u1 = A cos t and u2 = A cosωt serve as the trial functions. Substituting u1 and u2 into Eq. (4) results in the following
residuals:

R1 = A3 (β − α) cos3(t) + αA3 cos(t) sin2(t), (30)

and

R2 =

A − Aω2 cos(ωt) + A3 β − αω2 cos(3ωt) + αA3ω2 cos(ωt) sin2(ωt). (31)

According to the amplitude–frequency formulation, the above residuals can be rewritten in the forms of weighted residuals:

R11 =
4
T1

∫ T1
4

0
R1 cos(t)dt, T1 = 2π, (32)

and

R22 =
4
T2

∫ T2
4

0
R2 cos(ωt)dt, T2 =

2π
ω

. (33)

Applying He’s frequency–amplitude formulation:

ω2
=

ω2
1R22 − ω2

2R11

R22 − R11
(34)

where

ω1 = 1, ω2 = ω. (35)

The approximate frequency can be obtained:

ωAFF =


3βA2 + 4


2αA2 + 4

 . (36)
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7. The application of the coupled homotopy-variational formulation (CHV)

The coupled method of homotopy perturbation method [38–42] and variational formulation [28–30], couples the
homotopy perturbation method with the variational method. The method first constructs a homotopy equation, and then
the solution is expanded into a series of p. As the zeroth order approximate solution is easy to be obtained, the second term
is solved using the variational approach, where the frequency of the nonlinear oscillator can be obtained. The first-order
solution is the best among all possible solutions, when the trial solution is chosen in cosine or sine function. This technology
is verymuch similar toMarinca’sworkwhere the unknownparameters are identified using least squares technology [36,37].

The following homotopy can be constructed:

u′′
+ ω2u + p


αu2u′′

+ αuu′2
+ βu3

+ (1 − ω2)u


= 0, p ∈ [0, 1] . (37)

When p = 0, Eq. (37) becomes the linearized equation, u′′
+ ω2u = 0, when p = 1, it turns out to be the original one.

Assume that the periodic solution to Eq. (4) may be written as a power series in p:

u = u0 + pu1 + p2u2 + · · · . (38)

Substituting Eq. (38) into Eq. (37) and collecting terms of the same power of p, give:

u′′

0 + ω2u0+ = 0, u0(0) = A, u′

0(0) = 0, (39)

and

u′′

1 + ω2u1 + αu2
0u

′′

0 + αu0u′2
0 + βu3

0 + (1 − ω2)u0 = 0, u1(0) = 0, u′

1(0) = 0. (40)

The solution of Eq. (39) is u0 = A cosωt , where ω will be identified from the variational formulation for u1, which reads:

J(u1) =

∫ T

0


−

1
2
u′2
1 +

1
2
ω2u2

1 + (1 − ω2)u0u1 + αu2
0u

′′

0u1 + αu0u′2
0 u1 + βu3

0u1


dt, T =

2π
ω

. (41)

To illustrate the procedure better, a simple trail function can be chosen:

u1 = B

cosωt −

1
3
cos 5ωt


. (42)

Substituting u1 into the functional equation (41) results in:

J(A, B, ω) =
πB
ω


A +

3
4
βA3

−
1
2
αA3ω2

−
4
3
Bω2

− Aω2


. (43)

Setting:

∂ J
∂B

= 0,
∂ J
∂ω

= 0. (44)

Solving the above equations, approximate frequency as a function of amplitude is equals to:

ωCHV =


3βA2 + 4


2αA2 + 4

 . (45)

The accuracy of the first-order approximate solution can be dramatically improved if the trail function is chosen:

u1 = B1


cosωt −

1
3
cos 3ωt


+ B3


1
3
cos 3ωt −

3
5
cos 5ωt +

5
7
cos 7ωt


. (46)

Substituting Eq. (46) into Eq. (41) leads to the result

J (A, B1, B3, ω) =
πA3

ω


−

1
6
αB3ω

2
−

1
3
αB1ω

2
+

1
12

βB3 +
2
3
βB1


+

πA
ω


B1 − B1ω

2
+ πω


8
9
B1B3ω −

4
9
B2
1ω −

187528
11025

B2
3ω


. (47)

The stationary condition of Eq. (47) requires that:

∂ J
∂B1

= 0,
∂ J
∂B3

= 0,
∂ J
∂ω

= 0. (48)
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The second-order approximate frequency can be obtained as follows:

ωCHV2 =
1
2

1
126652αA2 + 21517α2A4 + 187528

(
√
2((126652αA2

+ 21517α2A4

+ 187528)(84843αA4β − 126652αA2
− 375056 − 250854A2β

+ 2(7216977924α2A8β2
+ 21565644372α2A6β + 127109500932αA4β

+ 42529125294αA6β2
+ 16115302204α2A4

+ 95003185024αA2
+ 140667003136

+ 188168595648A2β + 6294637259)1A4β2)1/2)1/2). (49)

8. Results and discussion

In this section, the applicability, accuracy and effectiveness of the proposed approaches are illustrated by comparing the
analytical approximate frequency and periodic solution with the exact solutions [1].

The nonlinear oscillator described in Eq. (4) is a conservative system. By integrating Eq. (4) and using the initial conditions
in Eq. (5):

1
2


1 + αu2 u′2

+
1
2
u2

+
1
4
βu4

=
1
2
A2

+
1
4
βA4. (50)

From the representation above:

du
dt

= ±


2

A2

− u2

+ β


A4

− u4


2

1 + αu2

  1
2

. (51)

The time required for u to change from 0 to A is one-fourth of the exact period Texact(A). Hence:

Texact(A) = 4
∫ A

0


2

1 + αu2


2

A2 − u2


+ β


A4 − u4

 1
2

du. (52)

Letting u = A cosωt in Eq. (52) leads to [1]

Texact(A) = 4
∫ π/2

0


2

1 + α (A cosωt)2


2

A2 − (A cosωt)2


+ β


A4 − (A cosωt)4

 1
2

dθ. (53)

Therefore, the exact frequency is given by:

ωexact(A) =
2π

Texact(A)
. (54)

Besides the role of the large amplitude A, a special role is played by themodal constantsα andβ , which depend on the inertia
parameters of the attached inertia element with mass M and rotary inertia J [2]. The simplest cases are when the modal
constants α, β are small, because in these cases it is easy to achieve accurate periodic solutions even for large amplitude.
Difficulties appear when these modal constants become larger [1,2].

The results obtained for variational approach, energy balance method, Hamiltonian approach, amplitude–frequency
formulation, integral iteration method and first-order coupled homotopy-variational formulation are similar and it is also
found that, the relative error for any α > 0, β > 0 is

lim
A→∞

ω

ωexact
=

2
√
3

π

∫ π/2

0

cos t
√
1 + cos2 t

dt = 0.86603. (55)

When ωVA = ωEBM = ωHA = ωIIM = ωAFF = ωCHV = ω.
Also Wu et al. obtained a similar result for this problem by the first order harmonic balance method [1].
For the small modal constants α = β = 0.1, the comparison of the exact frequency ωexact , obtained by integrating

Eq. (54), with the first analytical approximate frequencies ω computed using Eqs. (11), (17), (24), (29), (36) and (45) and the
first order harmonic balance method is illustrated in Figs. 1–2.

The second-order approximation given by Eq. (49) is actually within 0.7% of the exact frequency for any α > 0, β > 0
when A → ∞.

lim
A→∞

ωCHV2

ωexact
== 0.9993. (56)

Figs. 3–6 indicate that Eq. (49) is more accurate than the first order approximationω and the second order harmonic balance
method [1].
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Fig. 1. Comparison of the first order approximate periodic solutions with the exact solution for α = β = 0.1, A = 5.

Fig. 2. Comparison of the first order approximate periodic solutions with the exact solution for α = β = 0.1, A = 10.

Fig. 3. Dependence of the exact and the analytical approximate frequencies on the amplitude of oscillation for α = β = 1, for large amplitude.

9. Conclusions

In this paper, six different methods are employed to propose first order and second order approximate solutions for the
non-linear oscillation equation arising in nonlinear engineering structures. By introducing these methods for oscillation
equations, the following observations have been made:
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Fig. 4. Dependence of the exact and the analytical approximate frequencies on the amplitude of oscillation for α = β = 2, for large amplitude.

Fig. 5. Comparison of the approximate periodic solutions with the exact solution for α = β = 2, A = 5.

Fig. 6. Comparison of the approximate periodic solutions with the exact solution for α = β = 2, A = 10.

(1) If the first order approximate solution is required, all the proposed methods can be applied by university students with
manual calculation without the requirement of advanced calculus.

(2) The second order approximation obtained with high accuracy by means of the coupled homotopy-variational
formulation.
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(3) The results obtained for variational approach, energy balance method, Hamiltonian approach, amplitude–frequency
formulation, integral iteration method, first order coupled homotopy-variational formulation and first order harmonic
balance for the first approximate are similar.

(4) The relative error is smaller for the second order coupled homotopy-variational formulation than the second order
harmonic balance.

(5) In coupled homotopy-variational formulation, the third- or higher-order approximates can readily obtain with high
accuracy.

(6) It is obvious that the variational approach provides us with a freedom of choice of trial function and gives us more
information on the relation between frequency and amplitude.

Convergence and error study for the above mentioned methods are further needed and it is clear that many other
modifications can be made.
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