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Abstract
We propose a solution of the parametrically excited oscillator problem using
the Hamiltonian formalism introduced by Glauber. The main advantage is that,
within the framework of this formalism, the different possible approximations
appear much more naturally than in the standard textbook presentation.
Experiments on adiabatic and resonant parametric excitations of a pendulum
are presented as an illustration, with particular attention being paid to the role
played by the phase of the excitation.

1. Introduction

Parametric oscillators have a large number of applications, especially in electronics and
optics [1]. Their study also provides a good introduction to parametric instability as the
Faraday instability for instance. The pedagogical interest of the subject is at the origin of
a wealth of publications and one can find a lot of papers proposing original experimental
devices [2]. Nevertheless, although these devices are rather simple and allow students an
easy familiarization with parametric oscillators, the theoretical explanation is generally either
elusive or cumbersome.

In this respect, let us briefly recall the usual textbook treatment of the problem [3, 4].
One is interested in the motion of a harmonic oscillator one or several parameters of which
are varied in the course of time. The most common example is that of a pendulum, the
hanging point of which undergoes a periodic vertical displacement, leading to a time variation
of apparent gravity g(t). The equation of the motion then reads

θ̈ + ω2(t)θ = 0, (1)

where θ is the (small) angle between the vertical and the pendulum and ω(t) = √
g(t)/�

is the time-dependent angular frequency, � standing for the pendulum length. If g follows

3 Present address: Department of Physics Astronomy University of Manitoba, Winnipeg MB R3T 2N2, Canada.
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a sinusoidal modulation of the type g(t) = g0(1 + εg sin �t), equation (1) is known as the
Mathieu equation [5]. At this step, the standard approach consists of declaring that a parametric
resonance occurs for � = 2ω and to look for a solution of the form

θ(t) = a(t) cos
�t

2
+ b(t) sin

�t

2
,

with � � 2ω and where a(t) and b(t) are slowly varying functions of time. This procedure
is of course perfectly correct, but not intuitive at first sight and often rather puzzling for
undergraduate students. As a matter of fact, the appearance of a resonance for � = 2ω is not
straightforward from equation (1).

We propose in this paper an alternative approach based on the Hamiltonian formalism.
The idea is to substitute a first-order but complex equation for equation (1) which is real but
of second order. It will then be possible to express the solution in an integral form, which
will suggest the well-founded approximations to be made in a very natural way. This paper
is organized as follows. In section 2, we establish the equations of a parametrically excited
harmonic oscillator using the Hamiltonian formalism. On this occasion, we introduce the
Glauber variables and the secular approximation. Section 3 is devoted to the experimental
device we used to illustrate the theoretical results. Section 4 deals with the adiabatic parametric
excitation: we solve the motion equations of section 2 in the case of a harmonic oscillator a
parameter of which is slowly varied, and we present an experimental illustration. Section 5 is
concerned with the resonant parametric excitation. We present a complete discussion of the
solution, overstepping the usual mere determination of the instability threshold (which can
also be done using the standard approach). In particular, we emphasize the role played by the
dephasing between the pendulum oscillation and the parametric excitation itself.

2. The Hamiltonian resolution

We shall now establish the first-order complex differential equation to be substituted for
equation (1). Since our experimental implementation uses a pendulum device, which is, by
the way, the most studied paradigm of the parametric oscillator, our calculations will therefore
be carried out using the pendulum example. Of course, they could also be applied to any other
type of parametrically excited harmonic oscillator.

2.1. The Glauber variable

To begin with, let us write down the equation of the problem. The dynamical variable is
naturally chosen to be angle θ . Let J be the inertia momentum with respect to the oscillation
axis, � the distance between the centre of mass and this axis, and M the total mass of the
pendulum. A Lagrangian of the system is

L = 1
2J θ̇2 − Mg�(1 − cos θ). (2)

We will only consider small oscillations, allowing us to substitute 1
2θ2 for 1 − cos θ into the

above equation. Furthermore, it will be convenient to introduce the new dynamical variable
q = √

Jθ . Then, from the new Lagrangian

L = 1
2 (q̇2 − ω2q2), (3a)

with ω = √
Mg�/J , we can build the Hamiltonian

H = 1
2 (p2 + ω2q2), (3b)
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where p is the conjugate momentum of dynamical variable q. Hamilton’s equations read
q̇ = ∂H

∂p
= p, ṗ = − ∂H

∂q
= −ω2q, which combine in the dissipation-free motion equation

q̈ + ω2q = 0.
One can then try to merge both Hamilton’s equations in a unique first-order equation.

With this aim, one has to build an ad hoc complex variable. Let us take for instance the
dimensionless Glauber variable α defined as

α = 1√
2h̄

(√
ωq +

i√
ω

p

)
, (4)

where h̄ is the usual quantum constant4. Of course, in our problem, everything is classical and
h̄ should in fine disappear from any relevant motion equation. We nevertheless keep Glauber’s
definition (4) for it provides an interesting bridge with quantum mechanics. Expressed in
terms of α, Hamiltonian H reads:

H = h̄ω|α|2. (5)

The dimensionless quantity |α|2 can thus be regarded as the number N of (semi-classical)
oscillation quanta. Moreover, the Poisson bracket {α, α∗} = ∂α

∂q
∂α∗
∂p

− ∂α
∂p

∂α∗
∂q

being equal to
1
ih̄ , the equation verified by α is independent of the numerical value of h̄, as expected for a
classical result; it reads

α̇ = {α,H } = −iωα � α(t) = α(0) e−iωt . (6)

So |α(t)|2 = |α(0)|2: the quanta number is a constant of the motion, which, allowing for
equation (5), contains the energy conservation in the dissipation-free movement. In the
complex plane of the Glauber variable α, the trajectory of the representative point (the ‘phase
portrait’) is a circle, with centre at the origin and followed clockwise uniformly.

2.2. The secular approximation

The simple free motion equation (6) of the oscillator naturally becomes involved when more
complex situations or phenomena are envisaged. For example, let us take dissipation into
account. In most textbooks [8], only viscous friction is considered, whereas solid friction is
often the dominant damping mechanism (as is the case with our pendulum device). However
that may be, since dissipation does not play a major role in our experimental discussion, we
shall use hereafter the simple viscous friction law for the sake of simplicity. Let us, therefore,
add the phenomenological −γ q̇(= −γp) viscous friction term to the right-hand side of the
second of Hamilton’s equations. Keeping definition (4) of α unchanged, we easily get

α̇ = 1√
2h̄

(√
ωp +

i√
ω

(−ω2q − γp)

)
= −iωα − γ

2
(α − α∗). (7)

Equation (7) is not difficult to solve, despite the α∗ term on its right-hand side. Its exact
solution is, as can easily be checked,

α(t) = e− γ t

2

[
α(0)

(
cos ω′t − i

ω

ω′ sin ω′t
)

+
γ

2ω′ α
∗(0) sin ω′t

]
, (8a)

with

ω′ =
√

ω2 − γ 2

4
. (8b)

4 Glauber [6] introduced his formalism in the quantum mechanics domain, when aiming to describe the quasi-
classical (‘coherent’) states of the HO. Hence the presence of the quantum constant h̄ in the definition itself of α,
which is just the classical transposition of the boson annihilation operator a: α is thus, unfortunately, often associated
with mere quantum mechanics. For more details, see [7].
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Provided that the damping is weak enough (i.e. γ � ω), the exact expression (8a) can be
approximated by

α(t) � α(0) e− γ t

2 e−iωt . (9)

It is remarkable that the above approximate solution (9) is exactly what is obtained when
neglecting the α∗ term on the right-hand side of equation (7). This can be understood as
follows. Let us set up a perturbative resolution of this equation, with damping being regarded
as the perturbation. The zero-order (i.e. unperturbed) solution, as displayed in equation (6), is
α(t) = A e−iωt , where A is a constant. Damping is then taken into account by allowing A to
vary slowly, i.e. at a rate typically of order of γ , which yields

Ȧ = −γ

2
(A − A∗ e2iωt ). (10)

In equation (10), the oscillations of the e2iωt phase factor average to zero the A∗ term’s
contribution to the time evolution of A, as can be seen by the time integration

A(t) = A(0) − γ

2

∫ t

0
dt ′(A(t ′) − A∗(t ′) e2iωt ′). (11)

The above equation is satisfied by A(t) = A(0) e− γ t

2 , provided that condition γ

2 � ∣∣2iω − γ

2

∣∣
(i.e. γ � ω) is fulfilled, which we assume. In fine, equation (10) can be simplified in
Ȧ = − γ

2 A, and the approximate result (9) is directly obtained. Neglecting the A∗ term on the
right-hand side of (10) is known as the secular approximation (SA). We shall use it frequently
throughout the present paper.

At the SA, and as a consequence of result (9), the oscillation quanta number N = |α|2
decays exponentially with the rate γ . Thus, in the complex plane of Glauber variable α, due
to the weak viscous friction, the circular phase portrait is changed into a uniformly followed
logarithmic spiral (with centre at the origin).

2.3. Parametric excitation

Let us consider now how the free motion equation (6) of the pendulum is modified when one
of its parameters is changed in the course of the oscillation. This parameter can be either
gravity g or length �. The former situation can be simulated, as seen in the introduction, by an
ad hoc acceleration (up or down) of the oscillation axis. The linearized Lagrangian (2) then
reads

L(t) = 1
2 (J θ̇2 − Mg(t)�θ2), (12)

and we obtain the motion equation (1) with ω(t) = √
Mg(t)�/J .

The second possible parametric excitation is achieved when changing � (and consequently
J , which is roughly equal to M�2) and gives the Lagrangian

L(t) = 1
2 (J (t)θ̇2 − Mg�(t)θ2), (13)

which leads to

1

J

d

dt
(J θ̇) + ω2(t)θ = 0, with ω(t) =

√
Mg�(t)

J (t)
. (14)

It should be noted that changing g or � does not lead to the same motion equation5.

5 In fact, equation (14) can be given the same form as (1) by substituting variable τ , defined by dτ = dt/J (t), for

time t. We then get d2θ

dτ2 + (Jω)2(τ )θ = 0 (see, for instance, [4]). Nevertheless, such a ‘time dilatation’ should rather
be regarded as an artful mathematical trick.
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Let us now perform a Legendre transformation of Lagrangians (12) and (13). In both
cases we get:

H(t) = σ 2

2J
+

1

2
Mg�θ2, (15)

where σ = J (t)θ̇ stands for the conjugate momentum of angle θ , and where either g or (J, �)

depends on time. It is noteworthy that expression (3b) of Hamiltonian H(t) is still valid, with
q = √

Jθ and p = σ√
J
( �= q̇). As a consequence, with definition (4) of α generalized in

α(t) = 1√
2h̄

(√
(Jω)(t)θ +

i√
(Jω)(t)

σ

)
, (16)

this Hamiltonian reads

H(t) = h̄ω(t)|α(t)|2, (17)

and the free motion equation (6) becomes

α̇(t) = {α,H } +
∂α

∂t
= −iω(t)α + f (t)α∗, (18a)

where

f (t) = ( ˙Jω)

2Jω
= d

dt
ln

√
(Jω)(t). (18b)

In order to simultaneously allow for a weak viscous damping and a parametric excitation
of the pendulum, equations (7) (on the right-hand side of which the nonsecular γ

2 α∗ viscous
term is henceforth neglected) and (18a) are combined into

α̇ = −iω(t)α − γ

2
α + f (t)α∗. (19)

Observe that both kinds of parametric excitation lead to the same motion equation (19) for
the Glauber variable α. Let us focus, for example, on the case of a small sinusoidal length
modulation:

�(t) = �0(1 + ε sin(�t + ϕ)), (20)

with ε � 1. We introduce a phase ϕ in view of analysing, as announced in the introduction,
its influence on the motion of the pendulum. When the length is modulated following (20),
J (t) and ω(t) are also modulated

J (t) = J0(1 + εJ sin(�t + ϕ)), (21)

ω(t) = ω0(1 + εω sin(�t + ϕ)), (22)

and f (t) reads

f (t) = εf � cos(�t + ϕ), (23)

where εJ , εω and εf = 1
2 (εJ + εω) can be calculated as functions of ε. For a simple pendulum,

J = M�2 and we have εJ = 2ε, εω = −ε/2 and εf = 3ε/4.

3. Experimental details

3.1. The experimental device

A sketch of the pendulum we used for the experiments is displayed in figure 1. This pendulum
is made of a couple of light parallel metallic rods with mass m. A heavy cylinder with mass
Mc can be slid along the rods. The whole set can rotate freely around one horizontal axis (A)
thanks to ball-bearings. The position of the pendulum is defined by the angle θ that the rods
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Figure 1. Experimental device. (a) The pendulum can rotate freely around axis (A). The cylindrical
mass MC is held, and can be slid, along a couple of rods thanks to a piano wire through a grooved
pulley in such a way that no torque at all is exerted upon (A). (b) The piano wire’s second extremity
is fastened on a vertical disc at a distance d from its horizontal axis (B). The disc’s rotation is
carried out by an electric engine and facilitated by a counterweight system. The phase of the disc’s
rotation is marked thanks to a magnet–coil device.

make with the vertical. This angle is measured by means of a potentiometric device connected
to a numerical oscilloscope (not shown in the figure).

The cylinder is held, and slid along the rods, thanks to a piano wire dragged through a
grooved pulley located on axis (A), so that no torque at all is exerted onto this axis by the
wire’s doing: moving mass Mc along the rods simply changes its distance �c to axis (A) and
should thus be regarded as a pure parametric excitation of the pendulum. In our experiment,
we perform a sinusoidal modulation of length �c. With this aim, the second extremity of the
piano wire is fastened on a vertical disc, at a distance d from its (horizontal) axis (B). An
electric engine rotates the disc at any desired angular frequency �. The disc is placed far
enough from the pendulum for length �c(t) to be consequently ruled by �c(t) = �c0 + d sin �t .
In order to mark the phase of the disc rotation, we glued a small magnet on its edge and put a
coil under the disc, at the vertical of its axis (B) (see (b) in figure 1). The disc being rotated
counterclockwise, we thus obtain a peak voltage roughly when the cylinder is at its mean
position (�c = �c0) and descending. Let us add that in order to balance the torque exerted by
the cylinder weight onto axis (B), and hence to facilitate the engine rotation, we disposed the
counterweight device displayed in the figure. The characteristics of the pendulum are listed
in table 1.

3.2. Deviation from simplicity

Our pendulum is clearly not simple and we will need to account for this non-simplicity in
our calculus when we want to compare the experimental results with the theory. The first
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Table 1. Characteristics of the pendulum.

Length of the rods L 82.2 cm ± 2 mm
Height of the cylinder h 2 cm ± 1 mm
Radius of the cylinder R 5.2 cm ± 1 mm
Mass of the rods m 177 g ± 5 g
Mass of the cylinder Mc 1.38 kg ± 10 g

difference with the simple pendulum is that we modulate �c and not � directly. Let us note

�c(t) = �c0(1 + εc sin(�t + ϕ)). (24)

The modulation depth εc depends on parameters d and �c0 of the device displayed in figure 1:
εc = d

�c0
. When the cylinder moves, it moves the centre of mass, M�(t) = 2× 1

2mL+Mc�c(t),
with M = 2m + Mc. We consequently have

ε = Mc�c0

M�0
εc. (25)

Furthermore, J is not equal to M�2 but reads J = Mc
(
�2

c + R2

2 + h2

12

)
+ 2

3mL2. We then obtain

εJ = 2
Mc�

2
c0

J0
εc. (26)

It follows that we have

εω = 1

2
(ε − εJ ) = 1

2

(
Mc�c0

M�0
− 2

Mc�
2
c0

J0

)
εc, (27)

and

εf = 1

2
(εJ + εω) = 1

4

(
Mc�c0

M�0
+ 2

Mc�
2
c0

J0

)
εc. (28)

4. Adiabatic parametric excitation

4.1. Mathematical resolution

Let us consider a slow (adiabatic in the Ehrenfest sense) variation of whichever parameter
(g or �). This means that the parameter and its time derivatives have small variations on
the time scale of one period 2π

ω
of the free oscillations, which can be summarized in the

following twofold condition. On the one hand |f (t)| � ω and, on the other hand, all nonzero
components of the Fourier spectrum of f (t) correspond to angular frequencies well below
ω. If this condition is fulfilled, the same arguments as in subsection (2.2) (when discussing
the relevance of keeping the γ

2 α∗ term on the right-hand side of equation (7)) hold: the
∂α
∂t

= f (t)α∗ term in equation (19) brings no secular contribution to the time evolution of
α(t), which reads in fine at the SA:

α(t) = α(0) e− γ

2 t e−iβ(t), (29a)

with

β(t) =
∫ t

0
dt ′ω(t ′). (29b)

The phase portrait is then a logarithmic spiral, still followed clockwise, but no longer uniformly.
Let us provisionally neglect dissipation: the above spiral becomes a circle. The quanta number
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Figure 2. (a) Decay of the oscillation maximum amplitude �(t) without (+, εc = 0) and with
(•, εc = 0.061) pendulum length modulation. (b) Fitted parameter a (as explained in the text) as
a function of the experimental modulation depth εc. The slope of the solid straight line is 0.62 ±
0.02, to be compared with the 0.64 theoretically predicted value.

N = |α|2 is therefore an adiabatic invariant of the undamped movement. Let � be the
maximum amplitude of the oscillation. The slowly varying total energy of the oscillator reads

E(t) = 1
2J (t)ω2(t)�2(t). (30a)

Allowing for (17) and (29a) with γ = 0, we get

|α|2 = E(t)

h̄ω(t)
= 1

2h̄
J (t)ω(t)�2(t) = cst, (30b)

so that � varies like (Jω)−1/2. It is noteworthy that this result holds even if parameter g or
� is varied over a wide range (provided that |�| � 1). Nevertheless, for the convenience of
our experimental implementation, we shall consider hereafter a small modulation depth ε, as
in equation (20). If � � ω, the SA is valid and the expected variation of � is then

�(t) = �0
(
1 − 1

2 (εω + εJ ) sin(�t + ϕ)
)
, (31)

which reduces to

�(t) = �0
(
1 − 3

4ε sin(�t + ϕ)
)

(32)

for a simple pendulum.

4.2. Experimental illustration

Let us recall that the pendulum we use in our experiment is not simple, with inter alia the
consequence that we do not modulate � directly but �c, with a modulation depth εc = d

�c0
(see

figure 1).
Figure 2(a) displays the evolution of � as a function of time, with and without modulation.

When there is no length modulation (εc = 0), we observe a linear damping which is well fitted
by the law, � = �0 − rt , with a linear decay rate r = 2.6 × 10−2 deg s−1. In the case of
length modulation (here εc = 0.061 and � � 0.07ω), we observe a low frequency modulation
of � superimposed to the linear damping. We can fit these data with

�(t) = (�0 − rt)(1 − a sin �t), (33)

where the values of r and � are known, and that of a is determined by the fit.
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Figure 2(b) displays the fitted parameter a as a function of the experimental modulation
depth εc. We obtain a straight line, with a slope of 0.62 ± 0.02. Now, according to (31), we
expect a = εf . The calculus detailed in 3.2 allows us to estimate, knowing the characteristics
of the pendulum (see table 1) and the mean position of the cylinder (�c0 = 60.2 cm ± 2 mm),
that εf = 0.64εc. So, the agreement is satisfactory.

5. Resonant parametric excitation

5.1. Mathematical resolution

We now come back to the general equation (19), and consider a situation in which the f (t)α∗

term on the right-hand side brings in a secular contribution to the time evolution of α. A
perturbative resolution is then set up, modifying equations (29) in

α(t) = A(t) e− γ

2 t e−iβ(t). (34)

Without parametric excitation, A(t) would be the constant A(0) = α(0). Due to the excitation,
it is the solution of the differential equation

Ȧ = f (t) e2iβ(t)A∗. (35)

The phase factor e2iβ(t) can be expanded as follows:

e2iβ(t) = e2iω0t
(

1 + 2iεω

ω0

�
(1 − cos(�t + ϕ)) + · · ·

)
. (36)

Moreover, when expanding f (t) also, function f (t) e2iβ(t) is of the general form

f (t) e2iβ(t) = �

+∞∑
n=−∞

cn ei(2ω0−n�)t−inϕ, (37)

where coefficients cn can be calculated as functions of εω and εf . The right-hand side of
equation (35) therefore gives a secular contribution to the time evolution of A only for a
discrete series of values of �, namely �n = 2ω0

n
, with n = 1, 2, 3, . . . . These values are the

resonant parametric excitation angular frequencies. At first order in the modulation depth
ε, the only nonzero coefficient cn in (37) is c1 = εf

2 . The main resonance is thus obtained
for � = 2ω0. Higher order resonances (n = 2, 3, . . .) are but the consequence of harmonic
generation in the full expansions of ω(t), β(t), f (t) and e2iβ(t). In this sense, they can be
regarded as ‘secondary’. In our experimental check, we shall focus on the ‘primary’ n = 1
resonance. Nevertheless, by care of generality, we write the following theoretical treatment in
such a way that it can also apply to any integer value of n. Setting

2δn = n� − 2ω0, ϕn = nϕ (38)

and assuming |δn| � ω0, equation (35) reads at the SA,

Ȧ = �cn e−2iδnt−iϕnA∗. (39)

Then, henceforth omitting index n in cn, ϕn and δn, and setting A = B e−iδt with B(0) =
A(0) = α(0), equation (39) becomes

Ḃ = iδB + �c e−iϕB∗. (40)

Writing B = X + iY and c e−iϕ = c′ + ic′′, equation (40) is turned into the linear system:[
Ẋ

Ẏ

]
= M

[
X

Y

]
, with M =

(
�c′ �c′′ − δ

�c′′ + δ −�c′

)
. (41)
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Figure 3. Threshold values |cnT|(�) for the parametric amplification for the n = 1, n = 2 and
n = 3 resonances (dotted lines: γ = 0; solid lines: γ �= 0). If |c| < |cT|(�), any initial oscillation
dies out when t → ∞. If |c| > |cT|(�), an initial oscillation of the pendulum may be exponentially
amplified.

This system is easily solved using standard methods. Let ±λ be the eigenvalues of matrix M

(λ2 = �2|c|2 − δ2). The solution of (40) reads, all calculations carried out,

B(t) = B+(t) + B−(t) = α+(0) eλt + α−(0) e−λt (42)

with

α+(0) = 1

2λ
[(λ + iδ)α(0) + �c e−iϕα∗(0)],

α−(0) = 1

2λ
[(λ − iδ)α(0) − �c e−iϕα∗(0)].

(43)

Then, one can go back to the expression of α(t) = α+(t) + α−(t), with

α±(t) = α±(0) e(±λ− γ

2 )t e−i( n�t
2 +β(t)−ω0t). (44)

It is noteworthy that, as suggested by (36), the phase factor ei(ω0t−β(t)) can be approximated
by unity if |εω| � 1. We then obtain the approximate expression

α(t) � α+(0) e(+λ− γ

2 )t e−i n�t
2 + α−(0) e(−λ− γ

2 )t e−i n�t
2 . (45)

5.2. The different regimes

From the above result (42), two regimes are possible, according to �|c| being smaller or larger
than |δ|.
(i) If �|c| < |δ|, then λ = i

√
δ2 − �2|c|2 is imaginary and function B(t) oscillates with

angular frequency
√

δ2 − �2|c|2.6

(ii) If �|c| > |δ|, then λ =
√

�2|c|2 − δ2 is real and B(t) is the sum of two terms with
constant arguments, the former growing like eλt , the latter decaying like e−λt .

Therefore, if we want a parametric instability to spread out, we must try to be in regime (ii),
which we assume in this subsection. Moreover, the growing rate λ should be large enough

6 By way of a check, observe that in the limit case |c| = 0 (i.e. when no parametric excitation is implemented at all),
we have β(t) = ω0t, λ = i|δ|, B(t) = α(0) eiδt , and thus (9) is recovered from (44), as expected.
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Figure 4. Left: regime (i). (a) Measured oscillation angle θ as a function of time. (b) Trajectory
of variable Bexp(t) in the complex plane. Right: regime (ii). (c) Measured oscillation angle θ as a
function of time. (d) Trajectory of variable Bexp(t) in the complex plane.

to make up for the dissipation. Thus, at a given �, threshold values cnT for the parametric
amplification to occur are defined by

λT =
√

�2|cnT|2 − δ2
n = γ

2
(46)

�|cnT| = 1

�

√(
n�

2
− ω0

)2

+
γ 2

4
� n

2ω0

√(
n�

2
− ω0

)2

+
γ 2

4
. (47)

Consequently, as is well known [9], the curve |cnT|(�) separates, in the vicinity of abscissa
�n = 2ω0

n
, the (|cn|,�) plane into two domains: beneath this curve, an initial oscillation

(α(0) �= 0) of the pendulum dies out whatever the α(0); above this curve, the amplitude
may exponentially increase (until its growth is limited by some nonlinearity, the discussion of
which is beyond the scope of the present paper). Curves |cnT|(�) are plotted in figure 4 for
n = 1, 2, 3.

The above analysis shows that the instability is entirely controlled merely by parameters
� and c. Nevertheless, phase ϕ is important too. In this respect, let us focus on primary
resonance n = 1. At the first order, c = c1 = εf

2 is real. We then have

λ + iδ = �c eiχ , with cos χ = λ

�c
and sin χ = δ

�c
, (48)
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and numbers α±(0) defined in (43) read

α+(0) = 1

cos χ
e−i ϕ−χ

2 Re
{
ei ϕ+χ

2 α(0)
}
,

α−(0) = 1

cos χ
e−i ϕ+χ

2 i Im
{
ei ϕ−χ

2 α(0)
}
.

(49)

When the solution is written in the above form, the role of phase ϕ is easily identified. Let us
assume, for the sake of maximum simplicity, that we are exactly at resonance, i.e. χ = 0. Then,
allowing for (45) and (49), the growing part θ+(t) of the solution oscillates in cos

(
ω0t + ϕ

2

)
.

Owing to (24), this corresponds to �c = �c0 and �̇c = −2ω0εc�c0, i.e. a shortening of the
pendulum, when θ+ = 0. On the other hand, the decaying part θ−(t) of the solution oscillates
in sin

(
ω0t + ϕ

2

)
; consequently, we have �c = �c0 and �̇c = 2ω0εc�c0, i.e. a lengthening of

the pendulum, for θ− = 0. The importance of this point can be easily shown on energetic
grounds. Let us imagine a child going on a swing, flexing his knees and standing up straight
periodically. If he stands up when the swing is at its lowest (i.e. vertical) position and flexes
his knees when it is at a maximum amplitude, he will have to do some work: at the lowest
position indeed the speed is maximum and he has to fight against a downward inertial force
which reduces to zero when the swing stops at a maximum amplitude. Doing so, he pumps
the swing (at actually an � = 2ω0 angular frequency). On the other hand, if he dephases
his movement, flexing his knees at the swing’s lowest position and standing up at maximum
amplitude, the opposite should happen: he damps the swing oscillation. A detailed discussion
of this question (including departure from the ideal parametric excitation) can be found in [10].

The later evolution of the pendulum motion is determined at the very beginning by the
initial dephasing between modulation and oscillation. In particular, if the initial oscillation
phase is chosen such that Re

{
ei ϕ

2 α(0)
} = 0, only the decreasing part α−(t) of the solution is

nonzero. There is then no instability, although parameters � and c are set for this instability
to occur. Practically speaking, this situation is never observed because it is impossible to get
α+(0) exactly zero. Nevertheless, as shown in the next section, it is possible to approach this
ideal situation, and observe temporarily a parametrically induced damping of the oscillation.

5.3. Experimental illustration

Let us now consider the experimental observations. We set �c0 to 67.1 cm ± 2 mm. Using the
characteristics of the pendulum listed in table 1, we calculate the period T0 = 1.62 ± 0.02 s.
The measured value is 1.62 s (ω0 = 3.87 rad s−1). We calculate also c1 = εf

2 � 0.33εc. With
an experimental length modulation depth εc = 5 × 10−2, we have therefore c1 = 1.65 × 10−2.
We choose the time origin to be the instant when the signal on the coil is maximum. Allowing
for the experimental setup described in section 3, we therefore expect a length modulation
with ϕ � 0.

Figures 4(a) and (c) show the evolution of the measured angle θ as a function of time, for
two different values of angular frequency �. From the θ(t) signal, we numerically construct
θ̇ (t) and calculate the complex function αexp defined as

αexp(t) =
(

θ(t) + i
θ̇ (t)

ω0

)
. (50)

Function αexp(t) is, save a multiplicative factor, the Glauber variable α(t), defined in (16),
into which, to be consistent at first order, ω0 and J0 are substituted for ω(t) and J (t). From
αexp(t), we then construct the complex function Bexp(t),

Bexp(t) = αexp(t) ei �
2 t . (51)
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Figure 5. (a) ( λ
ω0

)2 as a function of x = �/2ω0 in both regimes (i) and (ii). The solid

line is the parabola ( λ
ω0

)2 = (ε2
f − 1)x2 + 2x − 1, with εf = 3.3 × 10−2. (b) Regime (ii):

sin[2 Arg{Bexp(t 	 λ−1)}] versus 1/x = 2ω0/�. The solid line is a fit: sin(χ − ϕ) as a function
of 1/x, obtained with ϕ = −0.29 rad.

According to formulae (42) and (44), and equalling β(t) and ω0t for first-order consistency
again, we expect Bexp to follow the law

Bexp(t) = (αexp+(0) eλt + αexp−(0) e−λt )e− γ

2 t . (52)

Let us recall that, with our experimental device, dissipation is dominated by solid friction, so
that the e− γ

2 t factor in equation (52) is not realistic. But the qualitative behaviour remains
valid.

In figures 4(a) and (b), � = 2.13ω0 and thus δ = 0.065ω0 > �|c1| = 0.035ω0: we
are in regime (i). The effect of length modulation is only to modulate the magnitude of the
oscillations. In figure 4(b), we show the trajectory followed by Bexp, as calculated from the
curve of figure 4(a). As expected in regime (i), λ is imaginary and Bexp follows a trajectory
spiralling with the angular frequency |λ|.

In figures 4(c) and (d), � � 2ω0 and thus δ � 0: we are in regime (ii). The effect
of modulation is ‘strong’. In this example, the magnitude of the oscillations begins by
decaying, then grows exponentially after a while. Figure 4(d) shows the trajectory of Bexp

for this experiment. Let us analyse this trajectory. The experiment being performed near
parametric resonance, we have χ � 0. Equations (49) thus yield α+(0) = Re{α(0)} and
α−(0) = i Im{α(0)}. In figure 4(d), we can see that |Re{Bexp(0)}| � |Im{Bexp(0)}|. So
|α+(0)| � |α−(0)| and the e−λt term dominates. As a consequence, the magnitude of
the oscillations decays. But since α+(0) is not strictly zero, the eλt term finally becomes
dominant, and the magnitude of the oscillations grows again exponentially. This asymptotic
regime goes with a locking of the phase, which tends towards an asymptotic value, almost π

in this example7.
We can check that the agreement between theory and experiments is quantitatively good

by measuring the values of λ and χ for different values of �.
Figure 5(a) shows the result for λ by displaying

(
λ
ω0

)2
as a function of x = �/2ω0. Since

λ2 = �2|c|2 − δ2, with c = εf

2 and δ = �
2 − ω0, the theoretical curve (solid line) is the

parabola
(

λ
ω0

)2 = (
ε2
f − 1

)
x2 + 2x − 1. One can appreciate the agreement between theory

and experiment. Note that the way we measure λ depends on which regime is concerned. In

7 Owing to (49), the asymptotic argument of Bexp(t) should be that of α+(0), i.e. zero since Re{α0} > 0. But figure 4(d)
should be analysed keeping in mind that χ and ϕ are not exactly zero, as discussed below.
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regime (i), λ is imaginary and we evaluate it by measuring the period of magnitude variations8.
In regime (ii), λ is real and we evaluate it by a fit of the asymptotic exponential growth of the
oscillation amplitude.

As for angle χ (defined by (48) in regime (ii) only), it can be derived from the measurement
of the asymptotic argument of Bexp which is theoretically expected to be equal to χ−ϕ

2 (see
(42) and (49)). Figure 5(b) displays sin(χ − ϕ) = sin[2 Arg{Bexp(t 	 λ−1)}] as a function of
1/x = 2ω0/�. If ϕ were exactly zero, we would obtain a straight line (see (48)). Actually
the fit gives ϕ = −0.29 rad (solid line in figure 5(b)). This negative value indicates that the
voltage peak we obtain on the coil occurs slightly before the cylinder reaches its mean position
(�c = �c0). This is well explained if we account for the finite sizes of the coil (radius 2.5 cm)
and the magnet (radius 1.4 cm). Indeed, the magnet-induced flux through the coil varies more
significantly when both elements begin to face each other than when they are exactly aligned
(i.e. maximum flux). Since the disc has a radius of 10 cm, the beginning of the {magnet–coil}
face to face occurs for a rotation angle of the disc roughly 2.5+1.4

10 � 0.39 rad before their exact
alignment, as can be checked by glancing at figure 1(b). The ϕ = −0.29 rad value obtained
with the fit fairly ranges between 0 and −0.39 rad, as expected.

6. Conclusion

In this paper, we have shown that use of the classical Glauber formalism leads to a very simple
form for the harmonic oscillator dynamic equations. This is particularly true for the free
oscillation, but holds too in the case of a weak viscous damping or a parametric excitation.
Moreover, the simplicity of these dynamic equations suggests the relevant approximations to
be made to solve them, as well as allowing complete resolutions. When considering parametric
excitation for instance, the adiabatic invariant appears very naturally to be the semi-classical
quanta number |α|2. The existence of the � = 2ω0 resonance is also a very intuitive result,
and the interpretation of experimental behaviour such as that displayed in figure 4(a) or (c) is
particularly easy whereas it would probably be a brain-racking task without the α-formalism
used in this paper. Of course, one could object that to profit by this more natural resolution of
the problem, it is necessary to use the Hamiltonian formalism, which could prima facie seem
to be handicapping from a pedagogical point of view. In our opinion, it is in fact a great asset:
it gives one more reason to teach the Hamiltonian formalism in a purely classical framework,
which provides a solid grounding for students who may later tackle quantum mechanics.
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