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is divisible by m. This is the generalization of Fermat’s
theorem to composite numbers. The “proof ” is again as
before. The first term comes from the totality of configura-
tions less the translationally invariant ones. The second
term subtracts the cyclic configurations with period
(m/p,), but in so doing, we have subtracted the configura-
tions with period (m/p;p;) twice, because this is a subperiod
in both the configurations with period (m/p;) and (m/p;).
Therefore, to correct the sum we must add them once
again. Now, however, we have added too much, because

the configuration with period (m/p,p;p, ) was first subtract-

ed three times [in configurations (m/p,), (m/p;) and
(m/p,)] and then added three times [in configurations
(m/p; p;), (m/p; p), and (m/p; p,.)] therefore we have to

subtract it once more. And so on.... Finally, we obtain the
expression shown, which represents the number of configu-
rations free of any of the above subperiods. These remain-
ing configurations may be classified into classes of m mem-
bers each, and hence, this number must be divisible by m.

We are indebted to Persi Diaconis for bringing to our
attention a somewhat similar proof of Fermat’s theorem by
Golomb.? However, the physical significance of the primes
or possible extensions of the theorem to composite num-
bers are not discussed in this note.

In conclusion we have found an interesting analogy to
the primes that is related to a lack of symmetry of certain
physical systems.

“Permanent address: Institute of Theoretical Physics, The Hebrew Uni-
versity, Jerusalem, Israel.

'C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory (Oxford
University, New York, 1966).

8. W. Golomb, Am. Math. Mon. 63, 718 (1956).
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We describe a nonlinear mechanical system that is easy to construct and demonstrates most of the
nonlinear effects associated with mechanical systems. The equation of motion for the system is
easily derived through a geometrical argument and is found to be Duffing’s equation. The relative
strengths of the linear and nonlinear terms can be easily varied and it is possible, in principle, to
make the linear term vanish completely. The system is also considered in a driven form. Periodic
motions of the system are analyzed theoretically and the results are compared with experiment.

Nonperiodic motions are also considered.

L. INTRODUCTION

Nonlinear effects are important in many areas of phys-
ics' and it is fairly safe to say that all physical phenomena
become nonlinear when the relevant parameters are made
sufficiently large. This paper presents a nonlinear mechani-
cal system that is easy to construct and demonstrates most
of the nonlinear effects associated with mechanical sys-
tems. The equation of motion for the system is easily de-
rived through a geometrical argument and is found to be
Duffing’s equation. The relative strengths of the linear and
nonlinear terms can easily be varied and it is possible, in
principle, to make the linear term vanish completely. The
system is also considered in a driven form. In Sec. II the
system is described and its equation of motion derived. In
Sec. III the periodic solutions of the equation of motion are
obtained. The results of the experiment are compared with
the theory in Sec. IV. Nonperiodic solutions are discussed
in Sec. V.
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II. APPARATUS

The system consists of a glider on an air track as shown
in Fig. 1. A restoring force is supplied by a length of rubber
(obtained by disecting a golf ball) that runs perpendicular
to the axis of the air track in the horizontal plane. The ends
of the rubber band are fixed at points symmetrically placed
on opposite sides of the track while the midpoint passes
through a vertical slot in the glider. Using the quantities
labeled in Fig. 1, the equation of motion of the glider is’

mi = — 2k (1 = (l/d)1 +#/d %15,

where the relaxed length of the rubber band is 2/; and its
spring constant is k /2. (If one thinks of the system as con-
sisting of two identical rubber bands they would have re-
laxed lengths /, and spring constants k.) If x*>/d ? is much
less than 1 this becomes

mi = — (2k&/d x — (klp/d *x°, (1)
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Fig. 1. Apparatus as seen from above.

where § = d — I, We now see how the relative strengths of
the nonlinear and linear terms can be controlled by simply
varying how lax the rubber band is in the equilibrium
position.

A driving force is applied to the system by the interaction
of a solenoid and a bar magnet. The magnet is held above
the glider by a clamp that fixes one end of the magnet to the
corresponding end of the glider. The solenoid is fixed with
respect to the track so that the free end of the magnet is
always within the solenoid. When a constant current passes
through the solenoid, the force on the magnet is indepen-
dent of position within a fairly broad range.> When a sinu-
soidally varying current with angular frequency @ passes
through the solenoid we have a nonlinear driven oscillator
and the equation of motion becomes

mi = — (2k8/d yx — (klo/d > + F cos ot, 2)

where F'is proportional to the amplitude of the current and
will be found experimentally.

HI. MATHEMATICAL RESULTS

Equation (2) is of the form*
X¥= —ax —fx*+ Gcos wt. (3)

We assume that B and G are sufficiently small so that the
last two terms are of a higher order than the other terms in
the equation. The apparatus can easily be adjusted so that
this holds. When Eq. (3) is expressed as

i+ax= —Bx*+ Gcosowt, (4)

we see that either x must be small or the X and ax terms
must cancel to lowest order.

Since we seek a periodic solution we are free to expand x
in a Fourier series. Without the nonlinear term this would
be a driven harmonic oscillator and the solution would be
of the form A4 cos wt. Since B is small it seems reasonable to
assume that the 4 cos wt term dominates the series. When
the series is substituted into Eq. (4) and we require the coef-
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A}

Fig. 2. Amplitude versus frequency for nonlinear oscillator with no damp-
ing. Dashed curve represents free oscillation. Solid curve is response for
oscillator driven with fixed amplitude.

ficient of cos wt to satisfy the resulting equation we have
@* —a=3B84%*/4—G/A. (5)

This relates the frequency and the amplitude of the domi-
nant term in the Fourier series expansion of x. Equating the
corresponding coefficients of other terms of the series is
expected to add higher-order corrections to x. The general
features of Eq. {5) are represented in Fig. 2 as well as the free
oscillations of the same system that is obtained by setting
G=0.
If a small amount of friction is included in the form of a
— cx term in Eq. (2), the curve is approximately the same
as the frictionless case except in the vicinity of the free
oscillation solution. In that region the two branches are
brought together in much the same fashion as in the:
damped linear case. This is sketched in Fig. 3.

As a function of frequency the curve shown in Fig. 3 is
seen to be multivalued. This leads to a behavior that is
fairly common in nonlinear mechanical systems called the
“jump phenomena’ and is easily seen in our system. If one,
keeping the amplitude of the driver fixed, starts at a low
frequency [(a) in Fig, 3] and slowly increases the frequency
the amplitude will rise following the curve up to a maxi-

Al

Fig. 3. Amplitude versus frequency for nonlinear oscillator with damping.
Dashed curve represents free oscillation. Solid curve is response for oscil-
lator driven with fixed amplitude.
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mum [(b) in Fig. 3]. A slight increase will cause the ampli-
tude for steady periodic motion to “jump down’’ to a small-
er value [(c) in Fig. 3]. Further increase in the frequency
will lead to a gradual decrease in the amplitudes [(d) in Fig.
3]. If the frequency is decreased from point ¢ a gradual
increase in the amplitude will be observed until we reach
point e. If the frequency is decreased further, the amplitude
for periodic oscillation will “jump up” to point fin Fig. 3.
The underside of the curve between points » and e represent
unstable periodic motions. These are shown to be parame-
trically unstable for the undamped oscillator in the
Appendix.

Free oscillation of the extreme nonlinear case where
a = 0 can also be analyzed. Equation (3) then becomes

X= —px’, (6)
which is a special case of
X= —Bx" (nodd). (7

This has an energy integral given by
24" n+ 1)=B4A" Y/ (n+ 1),

where A is the amplitude of the oscillation. This can be
written as :

—2T—= ln+1)/284"+'1'2 ! dx[1 —(x/4y+1] -2

—A
+1
=[(n+1)/28124""2 [ du(l —u"+")"'7,
—1
where T is the period. Since the integral is independent of
amplitude we see

TxA (1 —n)/2
or

a)c:A (n — l)/2.

(ecm)

1Al

For our system in the extreme nonlinear case we have
wxd. (8)

IV. EXPERIMENTAL RESULTS

For our apparatus® k = 3800 + 100 dyn/cm, /, = 14.09
cm, m=263.6 g, d=18.0 cm, and §=3940.1 cm
where only the significant uncertainties are given. With
these values, a and B of Eq. (3) become 4.17 1/sec? and
2.62X 1072 1/sec? cm?, respectively. When x is a few centi-
meters we see that the third-order term is approximately
20% of the linear term. The next term (fifth order) can be
shown to be approximately 10% of the third-order term.
The damping term is found experimentally to be approxi-
mately — 6X 10~3x. Hence our calculations for the driv-
en, nonlinear oscillator where damping is neglected are ap-
plicable. For the driven case the amplitude of the driver
divided by m [G in Eq. (3)] is 0.487 d /g. This is achieved
with an alternating current of constant amplitude near 1 A.
The theoretical curves and experimental points are shown
in Fig. 4 and are in good agreement. The uncertainty in 4 is
about 0.2 cm.

By scanning through the frequency range the “jump
phenomena” is observed. The frequency at which the
“jump up”occurs is in good agreement with theory as
shown in Fig. 4. The frequency for the “jump down” is
determined by the damping if the magnitude of the driving
force is kept constant as discussed in Sec. III. With our
apparatus, the magnitude of the driver falls off at large
amplitudes and it is this effect that determines the exact
frequency of the “jump down.”

During the “jump” the motion is not periodic and ap-
pears to consist of a combination of periodic motions with a
“beatlike” behavior. This eventually dies down to a purely
periodic motion. The values given in Fig. 4 represent this

Fig. 4. Comparison of
theory with experi-
ment. Dashed curve is
the theoretical predic-
tion for free oscilla-
tion and the circles
are the corresponding
experimental results.
The solid curve gives
the theoretical results
for the driven oscilla-
tor and the crosses are
the corresponding ex-
perimental results.
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periodic motion. This “beatlike” behavior also occurs
when . the driver is abruptly turned on with initial condi-
tionsx =0and x =0.

This would be the expected behavior for a linear system
where, initally, natural and driving frequency components
are present. In that case the natural frequency component
dies away with time. The same argument cannot be applied
to the nonlinear case due to the coupling of the periodic
components via the nonlinear term. Nonperiodic solutions
of Eq. (4) consisting of two frequency components will be
found in Sec. V. The presence of these solutions seems to
explain the “beatlike” behavior observed.

When the sinusoidal driver is replaced by a square wave
or saw tooth driver of the same rms amplitude the results
are remarkably similar to the earlier results showing an
insensitivity to the additional harmonics in the driver.

The system was also set up in the extreme nonlinear case
[a = 0 in Eq. (3)] and free periodic oscillations examined.
We saw general agreement with the » « 4 law, but the re-
sults were unclear at low amplitude where the energy con-
tent of the system is very small and minor external distur-
bances become important. When driven, the system still
exhibited the “jump phenomena,” but no comparison with
the above theory can be made since it is not applicable in
this regime.

V. NONPERIODIC SOLUTIONS AND INITIAL
CONDITIONS

The periodic solutions found in Sec. III contain no arbi-
trary constants that might be used to satisfy initial condi-
tions. In the linear driven harmonic oscillator problem this
is done by adding the general solution of the homogenous
equation (free harmonic oscillator) to the solution of the
driven oscillator. This approach is not applicable here since
the sum will not be a solution.

Our approach is to start with an expression that satisfies
the initial conditions and use the equation of motion to
determine the newly introduced frequency. A particular
example is presented in detail followed by a statement of
the general result.

We seek a solution of Eq. (4) with initial conditions

x(t=0)=0,
X(t=0)=0.
The expression
x =A cos wt — A cos wjt 9

satisfies the intial conditions and is taken as our approxi-
mate solution. 4 and w; are to be determined by substitu-
tion into Eq. (4) and equating coefficients of cos wz and
cos wyt . Itis assumed that the other frequency terms are of
higher order. When this is done we obtain

Ala—w?)= —9B4%/4 + G, (10a)
a—owh) = —984%/4. (10b)

These may now be solved for 4 and /. Rather than
carry out the algebra we prefer to point out some key fea-
tures. Equation (10b) is similar to Eq. (5) without a driver
(G = 0), but wj, is shifted farther from v/« than in the earli-
er case. This may be understood to some extent by noting
that Eq. (9) does not have a well-defined amplitude and
ranges from O to 24. Equations (10a) and {10b) may be com-
bined to give
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A=G/w) —a?), (11)

which is the usual resonance behavior where the natural
frequency is wg.

Since (10a) is cubic in 4, the solution is, in general, not
unique. In order to choose among the possible candidates
we examine the higher-order terms to see if they are small
in accordance with our assumptions (in particular, we must.
approximately maintain the initial conditions when the
higher-order terms are added). For this case, we find we
must take the solution 4, of Eq. (10a), with the smallest
absolute magnitude.®

More general initial conditions may be satisfied by start-
ing with

x=A coswt + B cos wjt + C sin wjt.

Here B and C are to be adjusted in accordance with the
initial conditions and may be expressed in terms of them.
The resulting expression is substituted in Eq. (4). When
coefficients of cos w?, cos @ ¢, and sin wy? are equated we
have

Al@—o®)= —3BA[A*+2B*+CI)/4+G,

(@ —w))= —38(24%+ B*+ CY/4,
where the second equation is given twice. As in the first
case, the first equation will give multiple solutions for 4.
Selection of a solution will depend on higher-order terms
and will depend on the initial conditions.

The presence of the two frequency components obtained
above seems to explain the “beatlike” behavior seen in the
experiment. From our experimental observations we also
know thdt w; frequency terms are eventually dampened
way leaving only the periodic behavior.
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APPENDIX

We examine the stability of the periodic solutions by sub-
stituting x = x, + € in Eq. (3), where x, is a periodic solu-
tion and € is small. This leads to

€+ ae + 3Px%=0.

When x is approximated by 4 cos ¢, this becomes

€ + (a + 3BA Y)e + §pA *(cos 2wt Je = 0.

This is the equation of a parametric oscillator with natural

frequency w3 = a + (3/2)84 2. Such systems are known to
have unstable solutions €(z) when’

ws —PA <’ <wl +3PA?
or

a+ifA <o’ <a+3PA%
But, a, S, and o are related by Eq. (5) and we see that our
solutions are unstable for

0< —G/A<3pA>.
If one is careful about keeping track of the sign in Eq. (5), it
is easily seen that this corresponds to the under side of the

response curve in Fig. 2 from the point where the slope is
infinite out to |4 | = co.
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Relating mystical concepts to those of physics: Some concerns
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Some of the present attempts to emphasize the parallels between mystical concepts and those of
physics are listed with a discussion of the reasons for a possible interaction between physics and
mysticism. Difficulties with these approaches are considered; some of the related educational or
learning aspects for physics are also discussed. It is concluded that efforts to use mysticism to help
understand physics are not justified and alternative pedagogical techniques are considered.

L. INTRODUCTION

In recent years there has been a marked increase in the
interest in and discussion of the similarities between phys-
ics and mysticism, particularly Eastern mysticism.'~® Al-
though scientists have intermittently observed parallels be-
tween the two disciplines, the marked increase in the
discussion of such parallels is an occurrence of the last half-
century, and more particularly of the last decade.’

This paper asserts that the reasons advanced for foster-
ing an interaction between physics and mysticism and for
discussing their respective concepts have not been ade-
quate nor always appropriate to justify such an interaction.
After a brief overview in Sec. II of the most popular corre-
lation theories, this discussion will have two broad con-
cerns. Section III will examine the difficulties inherent in
and overlooked by the dialog of mysticism and physics as it
has so far proceeded. In particular, it will examine the idea
of a “common mysticism” and an apparent argument for
including mystical concepts in discussions of concepts in
physics. Sections IV and V will examine the learning and
teaching of physics as it possibly relates to mystical con-
cepts. The sections will address some of the questions rela-
tive to teaching the nature and content of physics and will
suggest alternatives to theinclusion of mystical concepts in
physics-teaching or -learning.
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I1. REASONS FOR THE DIALOG

The reasons for mixing physics and mysticism in books
and courses have been given elsewhere by Harrison,® and
certainly they have a strong appeal. Anything that can help
to make the principles of physics more readily available to a
larger public is a potentially valuable contribution. Yet, the
specific reasons for the dialog between mysticism and phys-
ics have not been adequately developed. The reasons seem
largely to fall under the need for understanding physical
concepts. That is, to say, attempting to understand the new
concepts in physics or at least learning to become comfort-
able with them appears to be the guiding force in the appeal
of mysticism for both layman and physicist. In fewer than a
hundred years, physics has changed from a world view
with concepts that were mechanistic, deterministic, and
largely absolute, to a world view employing concepts that
are relative, often nondeterministic, and stochastic in na-
ture. Furthermore, and as a consequence of this change, it
is now recognized that the experimental result can never be
totally isolated from the actions of the experimenter. The
former, older world view, the Newtonian world view with
its Greek bases and with its unique intellectual bias, has
been usurped in fewer than 75 years. Although our West-
ern culture had similar beginnings to those of physics, it is
possible that physics has in those 75 years felt isolated or
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